Following laboratory safety protocols such as wearing personal protective equipment will protect John when the accident occurred.
<h3>What are laboratory safety protocols?</h3>
Laboratory safety protocols are the protocols put in place to ensure safety in the laboratory.
Laboratory safety protocols include the following:
- always wear personal protective equipment in the laboratory
- do not play in the laboratory
- do not eat in the laboratory
Following laboratory safety protocols will help protect us from accidents which occur in the laboratory.
What happened when john was carefully pouring a chemical into a beaker when the beaker slips and breaks is an example of laboratory accident.
Wearing personal protective equipment will protect John.
In conclusion, following laboratory safety protocols will protect us when accidents occur in the laboratory.
Learn more about laboratory safety protocols at: brainly.com/question/17994387
#SPJ1
Note that the complete question is given as follows:
John is carefully pouring a chemical into a beaker when the beaker slips and breaks. How would laboratory safety protocols help John?
Answer:
[OH⁻] = 3.34x10⁻³M; Percent ionization = 0.54%; pH = 11.52
Explanation:
Kb of the reaction:
NH3 + H2O(l) ⇄ NH4+ + OH-
Is:
Kb = 1.8x10⁻⁵ = [NH₄⁺] [OH⁻] / [NH₃]
<em>As all NH₄⁺ and OH⁻ comes from the same source we can write: </em>
<em>[NH₄⁺] = [OH⁻] = X</em>
<em>And as </em>[NH₃] = 0.619M
1.8x10⁻⁵ = [X] [X] / [0.619M]
1.11x10⁻⁵ = X²
3.34x10⁻³ = X = [NH₄⁺] = [OH⁻]
<h3>[OH⁻] = 3.34x10⁻³M</h3><h3 />
% ionization:
[NH₄⁺] / [NH₃] * 100 = 3.34x10⁻³M / 0.619M * 100 = 0.54%
pH:
As pOH = -log [OH-]
pOH = 2.48
pH = 14 - pOH
<h3>pH = 11.52</h3>
I can =335ml
2cans=?
2cans×335ml÷1
= 670ml
Uhh add a picture so I can help
Answer:
11.9 is the pOH of a 0.150 M solution of potassium nitrite.
Explanation:
Solution : Given,
Concentration (c) = 0.150 M
Acid dissociation constant = 
The equilibrium reaction for dissociation of
(weak acid) is,

initially conc. c 0 0
At eqm.

First we have to calculate the concentration of value of dissociation constant
.
Formula used :

Now put all the given values in this formula ,we get the value of dissociation constant
.



By solving the terms, we get

No we have to calculate the concentration of hydronium ion or hydrogen ion.
![[H^+]=c\alpha=0.150\times 0.0533=0.007995 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%3D0.150%5Ctimes%200.0533%3D0.007995%20M)
Now we have to calculate the pH.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


pH + pOH = 14
pOH =14 -2.1 = 11.9
Therefore, the pOH of the solution is 11.9