Answer: option D) energy was absorbed and entropy increased.
Explanation:
1) Given balanced equation:
2H₂O (l) + 571.6 kJ → 2 H₂ (g) + O₂(g).
2) Being the energy placed on the side of the reactants means that the energy is used (consumed or absorbed). This is an endothermic reaction.
So, the first part is that energy was absorbed.
3) As for the entropy, it is a measure of the disorder or radomness of the system.
Since, two molecules of liquid water were transformed into three molecules of gas, i.e. more molecules and more kinetic energy, therefore the new state has a greater degree of radomness, is more disordered, and you conclude that the entropy increased.
With that, you have shown that the right option is D) energy was absorbed and increased.
Answer: The final temperature would be 1250.7 K.
Explanation: We are given a sample of helium gas, the initial conditions are:
(Conversion factor: 1L = 1000 mL)
(Conversion Factor: 1° C = 273 K)
The same gas is expanded at constant pressure, so the final conditions are:


To calculate the final temperature, we use Charles law, which states that the volume of the gas is directly proportional to the temperature at constant pressure.


Putting the values, in above equation, we get:


Pressure<span> with </span>Height<span>: </span>pressure<span> decreases with increasing </span>altitude<span>. The </span>pressure<span> at any level in the </span>atmosphere<span> may be interpreted as the total weight of the </span>air<span> above a unit area at any </span>elevation<span>. At higher elevations, there </span>are<span> fewer </span>air<span> molecules above a given surface than a similar surface at lower levels.</span>
Pretty sure it’s Mixture if I’m not wrong