Well for a start, this makes absolutely no sense, "discovered a fuel that burns so hot that it becomes cold."
<span>And yes, it's not science if the experiment can't be repeated. In fact they should WANT it to be repeated so that you can get credit for discovering something new and then possibly harness this effect to produce useful applications. </span>
<span>For all we know they had a fewer of LN2 in the lab that got shredded by the blast, LN2 could certainly have frozen many things (not metal though, since metal is already solid at room temperature, (except for mercury)), and afterwards would leave no trace.</span>
The answer is: the mass of 6.02 x 1023 representative particles of the element.
The base SI unit for molar mass is kg/mol, but chemist more use g/mol (gram per mole).
For example, molar mas of ammonia is 17.031 g/mol.
M(NH₃) = Ar(N) + 3 · Ar(H) · g/mol.
M(NH₃) = 14.007 + 3 · 1.008 · g/mol.
M(NH₃) = 17.031 g/mol.
The molar mass (M) is the mass of a given substance (in this example ammonia) divided by the amount of substance.
Answer:
A radionuclide is an atom that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle from the nucleus. Wikipedia
The existence of isotopes contradicts part of Dalton's original atomic theory because he said all atoms of a given element are identical have the same mass size and chemical properties.
Ionic would be the answer