Explanation :
It is given that,
Mass of the car, m = 1000 kg
Force applied by the motor, 
The static and dynamic friction coefficient is, 
Let a is the acceleration of the car. Since, the car is in motion, the coefficient of sliding friction can be used. At equilibrium,




So, the acceleration of the car is
. Hence, this is the required solution.
Answer:0.6kw
Explanation:
Power=force×velocity
Power=20×30=600w
In kw it's going to be 600/1000=0.6kw
Answer:
The baseball will stay in motion until another force act upon it.
Explanation:
Answer:
Approximately
. (Assuming that the drag on this ball is negligible, and that
.)
Explanation:
Assume that the drag (air friction) on this ball is negligible. Motion of this ball during the descent:
- Horizontal: no acceleration, velocity is constant (at
is constant throughout the descent.) - Vertical: constant downward acceleration at
, starting at
.
The horizontal velocity of this ball is constant during the descent. The horizontal distance that the ball has travelled during the descent is also given:
. Combine these two quantities to find the duration of this descent:
.
In other words, the ball in this question start at a vertical velocity of
, accelerated downwards at
, and reached the ground after
.
Apply the SUVAT equation
to find the vertical displacement of this ball.
.
In other words, the ball is
below where it was before the descent (hence the negative sign in front of the number.) The height of this cliff would be
.
Answer:
the total mass is 35 kg
k.E = 1/2 mv2
43.76 =1/2 v2
v2=2×43.76
Explanation:
v=radicls 87.52 which is equal to 9.5 m/s