Answer:
w₂ = 22.6 rad/s
Explanation:
This exercise the system is formed by platform, man and bricks; For this system, when the bricks are released, the forces are internal, so the kinetic moment is conserved.
Let's write the moment two moments
initial instant. Before releasing bricks
L₀ = I₁ w₁
final moment. After releasing the bricks
= I₂W₂
L₀ = L_{f}
I₁ w₁ = I₂ w₂
w₂ = I₁ / I₂ w₁
let's reduce the data to the SI system
w₁ = 1.2 rev / s (2π rad / 1rev) = 7.54 rad / s
let's calculate
w₂ = 6.0/2.0 7.54
w₂ = 22.6 rad/s
For some reasons, no. If the driver looks focused and has experience, then it would be okay. Again, it could be dangerous if you bump into the truck, it would cause damage to you and your passengers.
Mostly, I would agree with 'No'. :)
268.6567 mph is its velocity when it crosses the finish line
d=(v1+v2 /2) x t
.25=(0+v2 /2) x 6.7/3600 hours
900=v2/2 x 6.7
v2=268.6567 mph as the speed with which the dragster crosses the finish
<h3>When acceleration is not zero, can speed remain constant?</h3>
The answer is that an accelerated motion can have a constant speed. Consider a particle travelling uniformly around a circle; it experiences acceleration since the motion's direction is changing, but it maintains a constant speed along the tangential axis throughout the motion.
Acceleration is the frequency of a change in velocity. Acceleration is a vector with magnitude and direction, much as velocity. For instance, if a car is moving in a straight path and speeding up, it is said to have forward (positive) acceleration, and if it is slowing down, it is said to have backward (negative) acceleration.
Learn more about velocity refer
brainly.com/question/24681896
#SPJ9
concave <span>ray diagrams were constructed in order to determine the general location, size, orientation, and type of image formed by concave mirrors. Perhaps you noticed that there is a definite relationship between the image characteristics and the location where an object placed in front of a concave mirror. but, convex</span><span>ray diagrams were constructed in order to determine the location, size, orientation, and type of image formed by concave mirrors. The ray diagram constructed earlier for a convex mirror revealed that the image of the object was virtual, upright, reduced in size and located behind the mirror. </span>
Answer:
64 J
Explanation:
The potential energy change of the spring ∆U = -W where W = work done by force, F.
Now W = ∫F.dx
So, ∆U = - ∫F.dx = - ∫Fdxcos180 (since the spring force and extension are in opposite directions)
∆U = - ∫-Fdx
= ∫F.dx
Since F = 40x - 6x² and x moves from x = 0 to x = 2 m, we integrate thus, ∆U = ∫₀²F.dx
= ∫₀²(40x - 6x²).dx
= ∫₀²(40xdx - 6x²dx)
= ∫₀²(40x²/2 - 6x³/3)
= ∫₀²(20x² - 2x³)
= [20x² - 2x³]₀²
= [(20(2)² - 2(2)³) - (20(0)² - 2(0)³)
= [(20(4) - 2(8)) - (0 - 0))
= [80 - 16 - 0]
= 64 J