This information describes the storm's velocity.
Answer:
Take whatever you weigh in pounds and divide by 2.205.
Explanation:
Because weight is a measure of the force you exert on the earth, with some simple manipulation of Newton's second law we can get your mass in kilograms. 2.205 is just a nice constant that does that for you, but the more in-depth version is that
F = ma
The equation for weight is thus
W = mg, where W is your weight in pounds, m is your mass, and g is the acceleration due to gravity (9.80 m/s^2)
Thus, your mass in kilograms is m = W / g.
Work is force times distance, so W = 40 N * 10 m = 400 J
Answer:
N = 167 Newtons
R = 727 Newtons
Explanation:
i) For static equilibrium, moments about any convenient point must sum to zero.
A moment is the product of a force and a moment arm length. Only the force acting perpendicular to a moment arm passing through the pivot point makes a moment.
ii) I will <em>ASSUME </em>the two moment arms are 0.05m and 0.15 m
CCW moments about the fulcrum are
190 N(0.2 m) + 280 N(0.05 m) = 52 N•m
CW moments are (N)N(0.15 m + 90 N(0.3 m) = 27 + 0.15N N•m
For static equilibrium, these must be equal
27 + 0.15N = 52
0.15N = 25
N = 166.6666666...
Sum moments about N to zero
(Same as saying CW and CCW moments must balance)
190(0.2 + 0.15) + 280(0.05 + 0.15) - R(0.15) - 90(0.3 - 0.15) = 0
R = 726.6666666...
We could verify this by summing vertical forces to zero.
R - 190 - 280 - 166.666666 - 90 = 0
R = 726.6666666...