Answer:
W_apparent = 93.1 kg
Explanation:
The apparent weight of a body is the weight due to the gravitational attraction minus the thrust due to the fluid where it will be found.
W_apparent = W - B
The push is given by the expression of Archimeas
B = ρ_fluide g V
ρ_al = m / V
m = ρ_al V
we substitute
W_apparent = ρ_al V g - ρ_fluide g V
W_apparent = g V (ρ_al - ρ_fluide)
we calculate
W_apparent = 980 50 (2.7 - 0.8)
W_apparent = 93100 g
W_apparent = 93.1 kg
During that final period of time,
his acceleration is
(9 m/s - 5 m/s) / (4 sec) = 1 m/s² .
Did you have a question to ask ?
Answer:Reducing mass i.e. water
Explanation:
Frequency For given mass in glass is given by

where k =stiffness of the glass
m=mass of water in glass
from the above expression we can see that if mass is inversely Proportional to frequency
thus reducing mass we can increase frequency
The First Law describes how an object acts when no force is acting upon it. So, rockets stay still until a force is applied to move them. Likewise, once they're in motion, they won't stop until a force is applied. Newton's Second Law tells us that the more mass an object has, the more force is needed to move it. A larger rocket will need stronger forces (eg. more fuel) to make it accelerate. The space shuttles required seven pounds of fuel for every pound of payload they carry. Newton's Third Law states that "every action has an equal and opposite reaction". In a rocket, burning fuel creates a push on the front of the rocket pushing it forward.
The air pressure is most likely lower.