The resolution<span> of a </span>microscope is the smallest resolvable distance between two objects. It is <span>defined as the shortest distance between two points on a specimen and the observer can still distinguish them.
</span>The wavelength is a determining and limiting factor in the degree of resolution afforded by the microscope. The relationship between the wavelength and the resolution is:
<span>Shorter wavelengths yield higher resolution </span>and visa versa.
I think it would be the one talking about if there’s water there would still be energy because water is used as a source of energy because there’s so much of it and it can be used again and again
Answer:
0.099C
Explanation:
First, we need to get the common potential voltage using the formula

Where V is the common voltage, C and V represent capacitance and charge respectively. Subscripts 1 and 2 to represent the the first and second respectively. Substituting the above with the following given values then

Therefore

Charge, Q is given by CV hence for the first capacitor charge will be 
Here, 
The correct formula to use for the situation given above is: F = MA, where F is the applied force, M is the mass of the object and A is the acceleration.
From the details given in the question, we are told that:
F = 18, 400N
M = 145 g = 145 / 1000 = 0.145 kg
A = ?
From the equation F = MA
A = F / M
A = 18,400 / 0.145 = 126,896.55 = 1.27 *10^5.
Therefore, the correct option is C.