Answer:
a) 0 metres
b) From time 0 s to 10 s , the car was accelerated. Its velocity accelerated from 0m/s to 20 m/s
c) 20 m/s
Explanation:
a) <em>Formula of displacement= velocity x time</em>
time=40 s
velocity =0 m/s
∴ displacement= 0 x 40 = 0 m
Magnitude of displacement is 0 m
b) The increase in velocity shows that there has been acceleration.
c) The average velocity of the car is =
{initial velocity + final velocity}
=
=20
Therefore, the magnitude of the average velocity of the car is 20 m/s
Answer:
(a) 17.37 rad/s^2
(b) 12479
Explanation:
t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0
w = v / r = 99 / 0.06 = 1650 rad/s
(a) Use first equation of motion for rotational motion
w = w0 + α t
1650 = 0 + α x 95
α = 17.37 rad/s^2
(b) Let θ be the angular displacement
Use third equation of motion for rotational motion
w^2 = w0^2 + 2 α θ
1650^2 = 0 + 2 x 17.37 x θ
θ = 78367.87 rad
number of revolutions, n = θ / 2 π
n = 78367.87 / ( 2 x 3.14)
n = 12478.9 ≈ 12479
Answer:f 30
Explanation: I am not really sure but try this
Answer:
True
The escape speed from the Moon is much smaller than from Earth.
Explanation:
The escape speed is defined as:
(1)
Where G is the gravitational constant, M is the mass and r is the radius.
The mass of the Earth is
and its radius is 
Then, replacing those values in equation 1 it is gotten.
For the case of the Moon:
Hence, the escape speed from the Moon is much smaller than from Earth.
Since it has a smaller mass and smaller radius compared to that from the Earth.