First, you find what 20% of 10 gallons of gas would be. This will show how many gallons the car actually uses.
10 gallons x 20% =
10 x 0.20 =
2 gallons used
Then you subtract that number from the total 10 gallons to get how many gallons of gas would be wasted.
10 gallons - 2 gallons =
8 gallons of gas wasted
Answer:
0.488 m
Explanation:
If θ be the angle ladder makes with the plane
cos θ = 1.2 / 5
Tan θ = 4.04
Let the height a person of weight 600 N can climb be h from the ground .
Distance from the base point where ladder touches the floor = h / tanθ
= h / 4.04
Total reaction force = total downward force
R = 200 + 600
800 N
Frictional force = μ R
= .2 x 800
= 160 N
Taking moment of force about the point on the ladder where it touches the floor and balancing them
200 x 1.2 x .5 + 600 x h / tanθ = μ R x 1.2 / tanθ ( reaction at the top point of ladder where it touches the wall is R₁ and
R₁ =μ R )
= 200 x 1.2 x .5 + 600 x h / tanθ = 160 x 1.2 / tanθ
120 - 600 h / 4.04 = 47.52
120 - 47.52 = 600 h / 4.04
72.48= 148.51 h
h = 0.488 m
=
C. <span>People need time to shift between two different stimuli.</span>
Well you know the formula is,
Power= Work/Time
So as time increases, Power Decreases, it's an inverse relationship.
Think about it like this, to have more "power" you have to be able to do a lot in a short amount of time, so by spending more time on something, your power decreases.
Answer:
It will take you 30.8 s to travel the 120 m of the ramp.
Explanation:
Hi there!
The equation for the position of an object moving in a straight line is:
x = x0 + v * t
Where:
x = position at time t
x0 = initial position
v = velocity
t = time
In this case, we will consider the start of the ramp as the origin of our reference system so that x0 = 0.
Now, let´s calculate the speed of the person walking on the ground:
x = v * t
120 m = v * 72 s
v = 120 m / 72 s
v = 1.7 m/s
If you walk on the ramp with that speed, your total speed will be your walking speed plus the speed of the ramp because both are in the same direction. Then, using the equation for the position:
x = v * t
In this case, v = speed of the ramp + walking speed
v = 2.2 m/s + 1.7 m/s = 3.9 m/s
120 m = 3.9 m/s * t
t = 120 m / 3.9 m/s = 30.8 s
It will take you 30.8 s to travel the 120 m