As a rocket increases height and slows down, it gains more and more potential energy and loses more and more kinetic energy. Potential energy is store energy (usually determined by height), and kinetic energy increases as speed increases.
HCl + NaOH -> H2O + NaCl
CaCO3 + KI -> K2CO2 + CaI2
AlF3 + Mg(NO3)2 -> Al(NO3)3 + MgF2
Answer:
Angle of incidence = 20°
Angle of reflection = 20°
Explanation:
Applying,
The first Law of Refraction: The incident ray, the reflected ray and the normal at the point of incidence all lies in the plane.
From the diagram,
Angle of incidence = 90-70
Angle of incidence = 20°
From the law of reflection,
Angle of incidence = Angle of reflection
Therefore,
Angle of reflection = 20°
Answer:
Explanation:
Electric field due to charge at origin
= k Q / r²
k is a constant , Q is charge and r is distance
= 9 x 10⁹ x 5 x 10⁻⁶ / .5²
= 180 x 10³ N /C
In vector form
E₁ = 180 x 10³ j
Electric field due to q₂ charge
= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²
= 30.33 x 10³ N / C
It will have negative slope θ with x axis
Tan θ = .5 / √.5² + .8²
= .5 / .94
θ = 28°
E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j
= 26.78 x 10³ i - 14.24 x 10³ j
Total electric field
E = E₁ + E₂
= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j
= 26.78 x 10³ i + 165.76 X 10³ j
magnitude
= √(26.78² + 165.76² ) x 10³ N /C
= 167.8 x 10³ N / C .