1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
3 years ago
13

A 0.2-kg ball moving at 2.0 m/s perpendicular to a wall rebounds from the wall at 1.5 m/s. The impulse given to the ball is:

Physics
1 answer:
kiruha [24]3 years ago
8 0

Answer:

J = 0.7 N-s away from wall

Explanation:

Given that,

Mass of the ball, m = 0.2 kg

Initial speed of the ball, u = 2 m/s

Final speed of the ball, v = -1.5 m/s (as it rebounds)

Impulse is equal to the change in momentum. So,

J=m(v-u)\\\\J=0.2\times (-1.5-2)\\\\J=-0.7\ N-m

So, the impulse given to the ball is 0.7 N-m and it is away from the wall. Hence, the correct option is (c).

You might be interested in
PLS HEEEEEELPPPPPPPPP!!!!!!!!​
Sveta_85 [38]

txt now you need to add to 14 to those two to get it between the 14 and 19 and basically you will just be able to do this the liquid is 45 as you know that's all I got to say for you is that you have to answer the phone for you equational to pay

7 0
3 years ago
ANOTHER PHYSICS QUESTION PLEASE HELP!
Sergio039 [100]
Answer


= 60


Hope it helps:)
5 0
3 years ago
n alpha particle (q = +2e, m = 4.00 u) travels in a circular path of radius 5.94 cm in a uniform magnetic field with B = 1.10 T.
9966 [12]

Answer:

a). V = 3.13*10⁶ m/s

b). T = 1.19*10^-7s

c). K.E = 2.04*10⁵

d). V = 1.02*10⁵V

Explanation:

q = +2e

M = 4.0u

r = 5.94cm = 0.0594m

B = 1.10T

1u = 1.67 * 10^-27kg

M = 4.0 * 1.67*10^-27 = 6.68*10^-27kg

a). Centripetal force = magnetic force

Mv / r = qB

V = qBr / m

V = [(2 * 1.60*10^-19) * 1.10 * 0.0594] / 6.68*10^-27

V = 2.09088 * 10^-20 / 6.68 * 10^-27

V = 3.13*10⁶ m/s

b). Period of revolution.

T = 2Πr / v

T = (2*π*0.0594) / 3.13*10⁶

T = 1.19*10⁻⁷s

c). kinetic energy = ½mv²

K.E = ½ * 6.68*10^-27 * (3.13*10⁶)²

K.E = 3.27*10^-14J

1ev = 1.60*10^-19J

xeV = 3.27*10^-14J

X = 2.04*10⁵eV

K.E = 2.04*10⁵eV

d). K.E = qV

V = K / q

V = 2.04*10⁵ / (2eV).....2e-

V = 1.02*10⁵V

7 0
3 years ago
A photon of wavelength 2.78 pm scatters at an angle of 147° from an initially stationary, unbound electron. What is the de Brogl
Elena-2011 [213]

Answer:

2.07 pm

Explanation:

The problem given here is the very well known Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta is the angle of scattering.

Given that, the scattering angle is, \theta=147^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8} } (1-cos147^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos147^\circ ) m.\\\lambda^{'}-\lambda=2.42(1-cos147^\circ ) p.m.\\\lambda^{'}-\lambda=4.45 p.m.

Here, the photon's incident wavelength is \lamda=2.78pm

Therefore,

\lambda^{'}=2.78+4.45=7.23 pm

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

where,\vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda,

and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therefore,

\lambda_{e}=\frac{2.78\times 7.23}{\sqrt{2.78^{2}+7.23^{2}-2\times 2.78\times 7.23\times cos147^\circ }} pm\\\lambda_{e}=\frac{20.0994}{9.68} = 2.07 pm

This is the de Broglie wavelength of the electron after scattering.

6 0
4 years ago
What does deposition mean in a sedimentary formation
Zinaida [17]
Answer:

Sedimentary rocks are types of rock that are formed by the deposition and subsequent cementation of that material at the Earth's surface and within bodies of water. Deposition means that all the sediments, soil, and rocks are all compressed (tightly pressed into each other) and create sedimentary rocks.

I hope this helps! :)
4 0
3 years ago
Other questions:
  • How do magnetic forces repel or attract?<br> Plz make it as simple as possible
    9·1 answer
  • What are balanced forces?
    15·2 answers
  • 7)
    12·1 answer
  • A frog has a genetic mutation in its skin cells that causes part of its skin to turn orange. The frog will not pass this genetic
    9·1 answer
  • Which statement describes a controlled experiment?
    6·1 answer
  • Astronomers have proposed the existence of an unexplained force that is causing the expansion of the universe to accelerate. Wha
    8·2 answers
  • Which quantity best captures the concept of resistance?
    9·1 answer
  • Identify at least two ways in which heavy rain can affect the efficiency of
    6·1 answer
  • Calculate the force necessary to accelerate a 10 kg table from<br> O m/s to 4 m/s in 2 seconds.
    6·1 answer
  • A ball of mass 2 kg is being pulled sideways by a force 3 N to the right, and a force of 8N to the left - these are the only for
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!