Answer:cross-sectional area, and thus surface area, increases the amount of air resistance an object experiences
Explanation:
Answer:
Option (D)
Explanation:
Terrestrial planets refers to those four planets that are nearest to the sun and that lies within the asteroid belt. These planets are mainly composed of rocks or other metal objects that have a hard and resistant surface on it. They have a metal core that is molten (liquid) in nature, and atmosphere is relatively less dense, and also various geological features are present on it like the crater, volcanoes which can be observed with the help of satellites. The average densities of these planets is about four times the density of water. For example, the density of water is 1 g/cm³, whereas the density of earth is 5.5 g/cm³.
Thus, the correct answer is option (D).
Answer:
The heat energy required is, E = 2200 J
Explanation:
Given,
The mass of paraffin, m = 2 Kg
The energy required to raise the temperature of the paraffin by 200° C = 44000 J
Then the heat energy required to raise the temperature of the paraffin by 10° C is given by,
Since 44000 J raises temperature by 200° C, then
E = 44000 J / 20
= 2200 J
Hence, the energy required to raise the temperature of the paraffin by 10° C is, E = 2200 J
Answer: A student walks 50 meters east, 40 meters north, 35 meters east, and then 20 m south. Then the magnitude and direction of the student's total displacement will be 87.32 m along the direction of AD or in east-south direction.
Explanation: To find the correct answer, we need to know about the Displacement of a body in motion.
<h3>What is displacement of a body in motion?</h3>
- The displacement is the shortest distance between initial and final positions of a body.
- It's a vector quantity, and can positive, negative, or zero.
- The magnitude of displacement is less than or equal to the distance travelled.
<h3>How to solve the problem?</h3>
- At first, we can draw a diagram showing the motion of the body.
- From the diagram, the displacement of the body will be equal to the distance between point A and D.
- To solve this, we can use Pythagoras theorem.

Thus, from the above calculations, we can conclude that, the displacement of the body will be equal to 87.32 m along the direction of AD or in east-south direction.
Learn more about the Displacement here:
brainly.com/question/28020108
#SPJ4
Answer:
v = 6t² + t + 2, s = 2t³ + ½ t² + 2t
59 m/s, 64.5 m
Explanation:
a = 12t + 1
v = ∫ a dt
v = 6t² + t + C
At t = 0, v = 2.
2 = 6(0)² + (0) + C
2 = C
Therefore, v = 6t² + t + 2.
s = ∫ v dt
s = 2t³ + ½ t² + 2t + C
At t = 0, s = 0.
0 = 2(0)³ + ½ (0)² + 2(0) + C
0 = C
Therefore, s = 2t³ + ½ t² + 2t.
At t = 3:
v = 6(3)² + (3) + 2 = 59
s = 2(3)³ + ½ (3)² + 2(3) = 64.5