The magnitude of the adhesive force allows the top block to remain
attached to the bottom when the blocks and the wire are balanced.
The option that must be true is;
Reason:
The tension exerted by the wire attached to the top block = T
Magnitude of the adhesive = 
Weight of the top block = 
Weight of the bottom block = 
Given that with the exertion of the tension, the two blocks remain at rest, we have;
- T =
+ 
The adhesive causes the bottom block to remain attached to the top block, we have;
Therefore, the magnitude of the adhesive force adds the bottom weight, to the top, weight, which gives;
The magnitude of the adhesive force = The weight of the bottom block
Therefore;
= 
Learn more here:
brainly.com/question/18907970
Answer:
150153.06122 N
Explanation:
m = Mass of person = 75 kg
h = Height of fall = 1 m
g = Acceleration due to gravity = 9.81 m/s²
F = Force
s = Displacement = 0.49 cm
Potential energy is given by

Work is given by

The average force exerted is 150153.06122 N
Answer:
C
Explanation:
A and B are not true and D is a disadvantage
Please be determined and being hardworking person do not rely on the other people to make your problems solved
Explanation:
Ok?
Answer:
B) Within an atom, an electron can have only particular energies.
Explanation:
As we know that electrons have energy but apart from electrons we know that protons and neutrons inside the nucleus of atom will also have energy in them.
rest all the statements are true as we have
A) Electrons orbit the nucleus rather like planets orbiting the Sun.
TRUE, because electrons can move in stationary orbit around the nucleus
C) Electrons can jump between energy levels in an atom only if they receive or give up an amount of energy equal to the difference in energy between the energy levels.
Difference amount of energy is lost or absorbed by the electron in form of photons
D) An electron has a negative electrical charge.
Charge of an electron is given as 
E) Electrons have very little mass compared to protons or neutrons
Mass of an electron is given as

mass of proton or neutron
