1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tems11 [23]
3 years ago
15

A 2.7-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spri

ng is attached to a wall, as shown. The initial height of the block is 0.54 m above the lowest part of the slide and the spring constant is 453 N/m.
(a) What is the block's speed when it is at a height of 0.25 m above the base of the slide?

(b) How far is the spring compressed?

(c) The spring sends the block back to the left. How high does the block rise?
Physics
1 answer:
exis [7]3 years ago
5 0

a) The speed of the block at a height of 0.25 m is 2.38 m/s

b) The compression of the spring is 0.25 m

c) The final height of the block is 0.54 m

Explanation:

a)

We can solve the problem by using the law of conservation of energy. In fact, the total mechanical energy (sum of kinetic+gravitational potential energy) must be conserved in absence of friction. So we can write:

U_i +K_i = U_f + K_f

where

U_i is the initial potential energy, at the top

K_i is the initial kinetic energy, at the top

U_f is the final potential energy, at halfway

K_f is the final kinetic energy, at halfway

The equation can be rewritten as

mgh_i + \frac{1}{2}mu^2 = mgh_f + \frac{1}{2}mv^2

where:

m = 2.7 kg is the mass of the block

g=9.8 m/s^2 is the acceleration of gravity

h_i = 0.54 is the initial height

u = 0 is the initial speed

h_f = 0.25 m is the final height of the block

v is the final speed when the block is at a height of 0.25 m

Solving for v,

v=\sqrt{u^2+2g(h_i-h_f)}=\sqrt{0+2(9.8)(0.54-0.25)}=2.38 m/s

b)

The total mechanical energy of the block can be calculated from the initial conditions, and it is

E=K_i + U_i = 0 + mgh_i = (2.7)(9.8)(0.54)=14.3 J

At the bottom of the ramp, the gravitational potential energy has become zero (because the final heigth is zero), and all the energy has been converted into kinetic energy. However, then the block compresses the spring, and the maximum compression of the spring occurs when the block stops: at that moment, all the energy of the block has been converted into elastic potential energy of the spring. So we can write

E=E_e = \frac{1}{2}kx^2

where

k = 453 N/m is the spring constant

x is the compression of the spring

And solving for x, we find

x=\sqrt{\frac{2E}{k}}=\sqrt{\frac{2(14.3)}{453}}=0.25 m

c)

If there is no friction acting on the block, we can apply again the law of conservation of energy. This time, the initial energy is the elastic potential energy stored in the spring:

E=E_e = 14.3 J

while the final energy is the energy at the point of maximum height, where all the energy has been converted into gravitational potetial energy:

E=U_f = mg h_f

where h_f is the maximum height reached. Solving for this quantity, we find

h_f = \frac{E}{mg}=\frac{14.3}{(2.7)(9.8)}=0.54 m

which is the initial height: this is correct, because the total mechanical energy is conserved, so the block must return to its initial position.

Learn more about kinetic and potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

brainly.com/question/6536722

#LearnwithBrainly

You might be interested in
Earth’s gravity keeps the moon in orbit by pulling on it.
MAXImum [283]

Answer:

A. pulls back on the Earth, which is the main cause of the rise and fall of the ocean tides on Earth.

5 0
3 years ago
Read 2 more answers
PLS HELP FAST!!!!!!!
Elan Coil [88]

Answer:D

Explanation:

6 0
1 year ago
Read 2 more answers
E=?
WITCHER [35]
E=mc2 or MC Squared as in (mass energy equivalence)
4 0
3 years ago
Why is it harder to get something moving than to keep it moving?
vovikov84 [41]

Answer:

momentum

Explanation:

when something starts rolling momentum keeps it going.

6 0
3 years ago
If you push on a wall of a building what will happen
mixas84 [53]

Answer: It will push back with an equal amount of force.

8 0
3 years ago
Other questions:
  • How does the density of fluid affect the magnitude of buoyancy acting on an object immersed in it
    14·1 answer
  • An astronaut in the International Space Station cannot stand on a weighing scale. But an astronaut inside a rotating space stati
    9·1 answer
  • The block brake consists of a pin-connected lever and friction block at B. The coefficient of static friction between the wheel
    10·2 answers
  • Letti is having a problem in her experiment that she does not know how to solve. In order to move forward, Letti needs to be .
    13·2 answers
  • 7. Which of the following statements concerning a short in a series circuit is true?
    12·1 answer
  • What are two force componentes of projectile motion
    8·1 answer
  • Due to human demand because of its importance to life, the Earth's most precious resource is 
    5·2 answers
  • A) A 12 kg object has a velocity of 37.5 m/s. What is its momentum?
    5·1 answer
  • A bungee jumper who is about to jump has her energy stored entirely as
    13·1 answer
  • What is the magnitude of a the vertical electric field that will balance the weight of a plastic sphere of mass 2. 1 g that has
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!