Answer:
Explanation:
Volume of block A = 10 x 6 x 1 = 60 cm³
Mass of block A = 630 g
density of mass A = mass / density
= 630 / 60 = 10.5g / cm³
Volume of block B = 5 x 5 x 3 = 75 cm³
Mass of block A = 604 g
density of mass A = mass / density
= 604 / 75 = 8.05 g / cm³
Since density of both A and B are less than that of mercury , both will float in mercury.
If the scale reads 650N, then the mass of whoever it is standing on the scale is
(weight) / (gravity) = (650N) / (9.8 m/s²) = 66.3 kilograms .
It's not MY mass, even if I'm the one standing on the scale.
If I stand on a scale and it reads 650 N, the scale is broken.
Answer:
7200 kg.m/s
Explanation:
According the law of conservation of linear momentum, the sum of momentum before and after collision are equal.
Using this principle, the sum of initial momentum will be given as p=mv where p is momentum, m is mass and v is velocity
Initial momentum
Mass of whale*initial velocity of whale + mass of seal*initial seal velocity
Since the seal is initially stationary, its velocity is zero. By substitution and taking right direction as positive
Initial momentum will be
1200*6+(280*0)=7200 kg.m/s
Since both initial and final momentum should be equal, hence the final momentum will also be 7200 kg.m/s
<span>Hudson Bay drainage basin</span>
The best name for the ionic bond that forms between them is Beryllium Bromide.
We have been provided with data,
Beryllium charge, q = 2
Bromine charge, q = -1
As we know the valance electron of Be is +2 and the valance electron of bromine is -1. Since one is metallic and the other is non-metallic.
Now, when they combine they exchange valance electron, and bromine change into bromide so they form Beryllium Bromide.
So, the best name for the ionic bond that forms between them is Beryllium Bromide.
Learn more about ionic bonds here:
brainly.com/question/21464719
#SPJ4