=Spectral lines are produced by transitions of electrons within atoms or ions. As the electrons move closer to or farther from the nucleus of an atom (or of an ion), energy in the form of light (or other radiation) is emitted or absorbed.…
To calculate the new pressure, we can use Boyle’s law to relate these two scenarios (Boyle’s law is used because the temperature is assumed to remain constant). Boyle’s law is:
P1V1 = P2V2,
Where “P” is pressure and “V” is volume. The pressure and volume of the first scenario is 215 torr and 51 mL, respectively, and the second scenario has a volume of 18.5 L (18,500 mL) and the unknown pressure - let’s call that “x”. Plugging these into the equation:
(215 torr)(51 mL) =(“x” torr)(18,500 mL)
x = 0.593 torr
The final pressure exerted by the gas would be 0.593 torr.
Hope this helps!
<span>Picture showing seven layers of rocks of different colors labeled A, B, C, D, E, F, and G from top to bottom;
A and B are parallel horizontal layers at the top of the diagram;
C, D, E, F, and G are slanted layers with C closest to the surface and G at the bottom.
</span>
The inference that is most likely correct is that (<span>C) Layer F is younger than Layer D.</span>
Answer:
Molecular Formula Fe2O12S3·5H2O
IUPAC Name iron(3+);tri sulfate;pentahydrate
Explanation:
Given that <span>sample a has a higher melting point than sample
b. Therefore, sample a is a longer chain of a </span><span>fatlike solid substance. It could also be that the bonds present in sample a is much stronger which will require more energy to break. Hope this answers the question.</span>