Answer:
The acceleration due to gravity is
times the value of g at the Earth’s surface.
(D) is correct option.
Explanation:
Given that,
Radius = 4000 miles
We need to calculate the gravitational force at surface
Gravitational force on the mass m on the surface of the earth
At r = R

....(I)
We need to calculate the gravitational force at height
Gravitational force on a mass m from the center of the earth,
At r = R + R = 2 R

....(II)
Dividing equation (II) by equation (I)


Hence, The acceleration due to gravity is
times the value of g at the Earth’s surface.
Answer:
Push - The most common form of force is a push through physical contact (like a lawnmower or shopping cart)
Pull - You can apply a force by directly pulling on an object (like pulling a wagon)
Explanation:
Answer:
The ball will have a kinetic energy of 0.615 Joules.
Explanation:
Use the kinetic energy formula

The kinetic energy at the moment of leaving the hand will be 0.615 Joules. (From there on, as it ball is traveling upwards, this energy will be gradually traded off with potential energy until the ball's velocity becomes zero at the apex of the flight)
From the information given above,
Mass [M] = 28 g
Change in temperature = 29 - 7 = 22
Specific heat of iron = 0.449 [This value is constant]
The formula for calculating heat absorbed, Q is
Q = Mass * Specific heat of Iron * change in temperature
Q = 28 * 0.449 * 22 = 276.58 J<span />
If the bubble travels 10 meters per second and it takes 10 seconds, then just multiply the distance per second by the total seconds to get the total depth.
10 • 10 = 100
The lake is 100 meters deep.
Think of it this way to clarify the answer:
It takes a bubble traveling at a speed of 10 meters per second 10 seconds to travel 100 meters.