Answer:
Newton’s third law of motion states that every action has an equal and opposite reaction. This indicates that forces always act in pairs. Reaction forces are equal and opposite, but they are not balanced forces because they act on different objects so they don’t cancel each other out.
The frictional force is in the opposite direction
A sample of nitrogen gas has a volume of 5.0 ml at a pressure of 1.50 atm. what is the pressure exerted by the gas if the volume increases to 30.0 ml, at constant temperature is 0.25atm.
On constant temperature, the pressure and volume relation become constant before and after the change in quantitities have occurred.
According to Boyle's Law,
P₁V₁ = P₂V₂
where, P₁ is pressure exerted by the gas initially
V₁ is the volume of gas initially
P₂ is pressure exerted by the gas finally
V₂ is the volume of gas finally
Given,
P₁ = 1.5 atm
V₁ = 5 ml
V₂ = 30 ml
P₂ =?
On substituting the given values in the above equation:
P₁V₁ = P₂V₂
1.5 atm × 5 ml = P₂ × 30 ml
P₂ = 0.25 atm
Hence, pressure exerted by the gas is 0.25atm.
Learn more about Boyle's Law here, brainly.com/question/1437490
#SPJ4
10 x 4^2 = 160 / 8..
V = 20m/s...
...x 8 = 100 miles,meters, metric what ever m stands for after 8 seconds.
This is my guess since the problem says 4m/s^2
V= distance/ ST (traveled/used)
A) The acceleration is due to gravity at any given point if you look at it vertically, so

.
b)

, so

. We use

and then the final speed must be 0 because it stops at the highest point. So

. Solve for

and you get

c)

, and then we plug the values:

and we already have the time from "b)", so
![Y_m_a_x = [(32sin(25))*(32sin(25)/10)] - 5(32sin(25)/10)^2](https://tex.z-dn.net/?f=Y_m_a_x%20%3D%20%5B%2832sin%2825%29%29%2A%2832sin%2825%29%2F10%29%5D%20-%205%2832sin%2825%29%2F10%29%5E2)
; then we just rearrange it
![Y_m_a_x = 10[(32sin(25))^2/100] - 5 [(32sin(25))^2/100]](https://tex.z-dn.net/?f=Y_m_a_x%20%3D%2010%5B%2832sin%2825%29%29%5E2%2F100%5D%20-%205%20%5B%2832sin%2825%29%29%5E2%2F100%5D%20)
and finally