Answer:
1. b. The door is exerting a centripetal force on you that balances the centrifugal force of the turn.
2. b. There is no net force acting on the object.
Explanation:
1. This is because as you move to the right due to the centrifugal force of the turn, a corresponding centripetal force acts on you due to the door which does not allow you fall out of the car since,<u> the door is exerting a centripetal force on you that balances the centrifugal force of the turn. </u>
So, the answer is b
2. This is because, since the object moves at a constant speed and thus does not accelerate, no net force can act on it since, a net force would imply that the object accelerates. Note that a constant speed does not imply that no force acts on it. It only shows that the resultant or net force is zero since the object does not accelerate.
So, <u>there is no net force acting on the object. </u>
So, b is the answer.
Answer:
The correct answer is - C) Jackie may maintain healthy body fat levels.
Explanation:
Jackie has a very active daily and on weekends routine that includes riding the bike, playing volleyball, pushing weeds, and sweeping the porch. The activities that Jackie is performing daily as well as the time that she spends on exercise may help her to maintain body fat levels.
Being physically active helps in maintaining fat levels in the body of an individual, and it is healthy for the individual.
Thus, the correct answer is - C) Jackie may maintain healthy body fat levels.
2130 cal is how much is released qhen 30 g of water at
Answer:
B
Explanation:
A body has kinetic energy that is moving
Answer:
a) x = 8.8 cm * cos (9.52 rad/s * t)
b) x = 8.45 cm
Explanation:
This is a Simple Harmonic Motion, and most Simple Harmonic Motion equations start from the equilibrium point. In this question however, we are starting from the max displacement the equations, and thus, it ought to be different.
From the question, we are given that
A = 8.8 cm = 0.088 m
t = 0.66 s
Now, we need to find the angular speed w, such that
w = 2π/T
w = (2 * 3.142) / 0.66
w = 6.284 / 0.66
w = 9.52 rad/s
The displacement equation of Simple Harmonic Motion is usually given as
x = A*sin(w*t)
But then, the equation starts from the equilibrium point at 0 sec, i.e x = 0 m
When you have to start from the max displacement, then the equation would be
x = A*cos(w*t).
So when t = 0 the cos(0) = 1, and then x = A which is max displacement.
Thus, the equation is
x = 8.8 cm * cos (9.52 rad/s * t)
At t = 1.7 s,
x = 8.8 cos (9.52 * 1.7)
x = 8.8 cos (16.184)
x = -8.45 cm