1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astraxan [27]
3 years ago
11

A ball is attached to the end of a massless string. A circus clown twirls the string with a pulling force of 12 N, and the ball

travels in a horizontal circle of radius 87 cm. The ball completes one revolution every 1.4 seconds. What is the mass of the ball?
Physics
2 answers:
abruzzese [7]3 years ago
6 0

Answer: 0.68 kg

Explanation:

The ball in this example moves by uniform circular motion. In a uniform circular motion, an object of mass m moves in a circular orbit of radius r, with constant tangential speed v. This type of motion is produced by a force F (called centripetal force) that "pushes" the object towards the centre of the circular path. The magnitude of this force is given by

F=m\frac{v^2}{r}

The formula can also be rewritten as

F=m\omega^2 r

where \omega=\frac{2 \pi}{T} the angular frequency, and T is the period of revolution.

In this problem, we have the following data:

- centripetal force: F = 12 N

- radius: r = 87 cm = 0.87 m

- period of revolution: T = 1.4 s

Using the last formula, we can find the angular frequency:

\omega=\frac{2 \pi}{T}=\frac{2 \pi}{1.4 s}=4.49 rad/s

And now we can substitute \omega inside the formula of the centripetal force, and by re-arranging it we can find the mass of the ball:

m=\frac{F}{\omega^2 r}=\frac{12 N}{(4.49 rad/s)^2 (0.87 m)}=0.68 kg

sergij07 [2.7K]3 years ago
5 0
The mass of the ball has to be 2.36 depending on the size and width
You might be interested in
A garden hose has a radius of 0.0120 m, and water initially comes out at a speed of 2.88m/s. Dasha puts her thumb over the end ,
creativ13 [48]

Answer:

v = 12.4 [m/s]

Explanation:

With the speed and Area information, we can determine the volumetric flow.

V=v*A\\A=\pi *r^{2}

where:

r = radius = 0.0120 [m]

v = 2.88 [m/s]

A=\pi *(0.0120)^{2} \\A=4.523*10^{-4} [m]\\

Therefore the flow is:

V=2.88*4.523*10^{-4} \\V=1.302*10^{-3} [m^{3}/s ]

Despite the fact that you cover the inlet with the finger, the volumetric flow rate is the same.

v=V/A\\v=1.302*10^{-3} /1.05*10^{-4} \\v=12.4[m/s]

3 0
3 years ago
A player kicks a soccer ball from ground level and sends it flying at an angle of 30 degrees at a speed of 26 m/s. What is the h
dybincka [34]

Given,

A player kicks a soccer hits at an angle of 30° at a speed of 26 m/s

We can resolute the trajectory of soccer into horizontal and vertical components.(Please see the attached file)

We can have,

Horizontal velocity component of ball= 26cos(30°)  = 26×(√3÷2) = 22.51 m/s

And vertical velocity component of ball = 26sin(26°) = 26×(1÷2) = 13 m/s


6 0
3 years ago
Cuanto cambia la entropía de 0.50 kg de vapor de mercurio [Lv: 2.7 x 10⁵ j/kg ] al calentarse en su punto de ebullición de 357°
lord [1]

Answer:

La entropía del vapor de mercurio cambia en 214.235 joules por Kelvin.

Explanation:

Por definición de entropía (S), medida en joules por Kelvin, tenemos la siguiente expresión:

dS = \frac{\delta Q}{T} (1)

Donde:

Q - Ganancia de calor, en joules.

T - Temperatura del sistema, en Kelvin.

Ampliamos (1) por la definición de calor latente:

dS = \frac{L_{v}}{T}\cdot dm (1b)

Donde:

m - Masa del sistema, en kilogramos.

L_{v} - Calor latente de vaporización, en joules

Puesto que no existe cambio en la temperatura durante el proceso de vaporización, transformamos la expresión diferencial en expresión de diferencia, es decir:

\Delta S = \frac{\Delta m \cdot L_{v}}{T}

Como vemos, el cambio de la entropía asociada al cambio de fase del mercurio es directamente proporcional a la masa del sistema. Si tenemos que m = 0.50\,kg,L_{v} = 2.7\times 10^{5}\,\frac{J}{kg} and T = 630.15\,K, entonces el cambio de entropía es:

\Delta S = \frac{(0.50\,kg)\cdot \left(2.7\times 10^{5}\,\frac{J}{kg} \right)}{630.15\,K}

\Delta S = 214.235 \,\frac{J}{K}

La entropía del vapor de mercurio cambia en 214.235 joules por Kelvin.

3 0
3 years ago
Two balls are thrown against a wall. Ball 1 has a much higher speed than ball 2.
Sunny_sXe [5.5K]

Let both the balls have the same mass equals to m.

Let v_1 and v_2 be the speed of the ball1 and the ball2 respectively, such that

v_1>v_2\;\cdots(i)

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.

The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed, v, is \frac 12 m v^2

and the potential energy is due to the change in height is mgh [where g is the acceleration due to gravity]

So, the total energy of ball1,

=\frac 12 m v_1^2 + mgh\;\cdots(ii)

and the total energy of ball1,

=\frac 12 m v_2^2 + mgh\;\cdots(iii).

Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)

So, \frac 12 m v_1^2 >\frac 12 m v_2^2

Now, from equations (ii) and (iii)

The total energy of ball1 hi higher than the total energy of ball2.

6 0
2 years ago
Charge g is distributed in a spherically symmetric ball of radius a. (a) Evaluate the average volume charge density p. (b) Now a
nasty-shy [4]

Answer:

Explanation:

The volume of a sphere is:

V = 4/3 * π * a^3

The volume charge density would then be:

p = Q/V

p = 3*Q/(4 * π * a^3)

If the charge density depends on the radius:

p = f(r) = k * r

I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.

Q = \int\limits^{2*\pi}_0\int\limits^\pi_0  \int\limits^r_0 {k * r} \, dr * r*d\theta* r*d\phi

Q = k *\int\limits^{2*\pi}_0\int\limits^\pi_0  \int\limits^r_0 {r^3} \, dr * d\theta* d\phi

Q = k *\int\limits^{2*\pi}_0\int\limits^\pi_0 {\frac{r^4}{4}} \, d\theta* d\phi

Q = k *\int\limits^{2*\pi}_0 {\frac{\pi r^4}{4}} \,  d\phi

Q = \frac{\pi^2 r^4}{2}}

Since p = k*r

Q = p*π^2*r^3 / 2

Then:

p(r) = 2*Q / (π^2*r^3)

3 0
2 years ago
Other questions:
  • A weightlifter lifts a 13.0-kg barbel from the ground an moves it a distance of 1.3 meters. What is the work se does on the barb
    9·1 answer
  • Two small plastic spheres between them has magnitude 0.22 N. What is the charge on each sphere is one the other? Explain whether
    12·1 answer
  • Part 1: A rope has one end tied to a vertical support. You hold the other end so that the rope is horizontal. If you move the en
    12·1 answer
  • A nova occurs when
    10·1 answer
  • Is metal denting a physical change
    15·1 answer
  • How t calculate gravitational force
    6·1 answer
  • A spring whose stiffness is 3500 N/m is used to launch a 4 kg block straight up in the classroom. The spring is initially compre
    8·1 answer
  • PLEASE I NEED HELP CLICK ON THIS IMAGE
    10·1 answer
  • A man walks 80m to the East and then turns around and walks back (West) a distance of 20m. What is his total distance and displa
    6·1 answer
  • The end of Earth’s_______ that is tilted toward the Sun receives more energy from the Sun?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!