Answer:
v = 12.4 [m/s]
Explanation:
With the speed and Area information, we can determine the volumetric flow.

where:
r = radius = 0.0120 [m]
v = 2.88 [m/s]
![A=\pi *(0.0120)^{2} \\A=4.523*10^{-4} [m]\\](https://tex.z-dn.net/?f=A%3D%5Cpi%20%2A%280.0120%29%5E%7B2%7D%20%5C%5CA%3D4.523%2A10%5E%7B-4%7D%20%5Bm%5D%5C%5C)
Therefore the flow is:
![V=2.88*4.523*10^{-4} \\V=1.302*10^{-3} [m^{3}/s ]](https://tex.z-dn.net/?f=V%3D2.88%2A4.523%2A10%5E%7B-4%7D%20%5C%5CV%3D1.302%2A10%5E%7B-3%7D%20%5Bm%5E%7B3%7D%2Fs%20%5D)
Despite the fact that you cover the inlet with the finger, the volumetric flow rate is the same.
![v=V/A\\v=1.302*10^{-3} /1.05*10^{-4} \\v=12.4[m/s]](https://tex.z-dn.net/?f=v%3DV%2FA%5C%5Cv%3D1.302%2A10%5E%7B-3%7D%20%2F1.05%2A10%5E%7B-4%7D%20%5C%5Cv%3D12.4%5Bm%2Fs%5D)
Given,
A player kicks a soccer hits at an angle of 30° at a speed of 26 m/s
We can resolute the trajectory of soccer into horizontal and vertical components.(Please see the attached file)
We can have,
Horizontal velocity component of ball= 26cos(30°) = 26×(√3÷2) = 22.51 m/s
And vertical velocity component of ball = 26sin(26°) = 26×(1÷2) = 13 m/s
Answer:
La entropía del vapor de mercurio cambia en 214.235 joules por Kelvin.
Explanation:
Por definición de entropía (
), medida en joules por Kelvin, tenemos la siguiente expresión:
(1)
Donde:
- Ganancia de calor, en joules.
- Temperatura del sistema, en Kelvin.
Ampliamos (1) por la definición de calor latente:
(1b)
Donde:
- Masa del sistema, en kilogramos.
- Calor latente de vaporización, en joules
Puesto que no existe cambio en la temperatura durante el proceso de vaporización, transformamos la expresión diferencial en expresión de diferencia, es decir:

Como vemos, el cambio de la entropía asociada al cambio de fase del mercurio es directamente proporcional a la masa del sistema. Si tenemos que
,
and
, entonces el cambio de entropía es:


La entropía del vapor de mercurio cambia en 214.235 joules por Kelvin.
Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.
Answer:
Explanation:
The volume of a sphere is:
V = 4/3 * π * a^3
The volume charge density would then be:
p = Q/V
p = 3*Q/(4 * π * a^3)
If the charge density depends on the radius:
p = f(r) = k * r
I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.





Since p = k*r
Q = p*π^2*r^3 / 2
Then:
p(r) = 2*Q / (π^2*r^3)