Because the masses that you give are for blocks that are 1 cubic meter in volume, they also serve as the densities for the two metals that you are comparing.
<span>mass = density*volume </span>
<span>volume = (4/3)*pi*r^3 </span>
<span>volume of iron sphere = (4/3)*3.14*0.0201^3 = 3.40*10^-5 m^3 </span>
<span>mass of iron sphere = 7860* 3.40*10^-5 m^3 = 0.27 kg = mass of Aluminum Sphere </span>
<span>Volume of Al Sphere = 0.27/2700 = 9.90*10^-5 m^3 </span>
<span>Radius = cube root (volume / (4/3) / pi) = 2.87 cm. </span>
<span>I did this using the MS calculator, and I'm not 100% sure on the numerical answer, but the process is what you need to do to solve the problem. You should double check my answer.
hope this helped :)
</span>
I think it’s D sorry If I’m wrong
Answer:
In SI units, its value is approximately 6.674×10−11 m3⋅kg−1⋅s−2. The modern notation of Newton's law involving G was introduced in the 1890s by C. V. Boys. The first implicit measurement with an accuracy within about 1% is attributed to Henry Cavendish in a 1798 experiment.
Explanation:
please add me in the brainelist.
This is a bit too broad. Maybe this is something to google up
C . plate a is negatively charged and plate b is positively charged