Answer:
6227.866 N
Explanation:
F = G . m(goku) . m(planet) / d²
F = 6.674 x 10-¹¹ x 62 x 1.458 . 10¹⁵ / 31²
F = 6227.866 N
It was Niels Bohr who proposed it
<span>node spacing = half of wavelength = 3 cm
velocity = 10 cm/s = freq * wavelength
hench freq = 10/6 = 5/3 = 1.7 hz</span>
The four inner planets share several features in common.
(Mercury, Venus, Earth and Mars)
They are called terrestrial planets because they have solid, rocky surfaces roughly similar to desert and mountainous areas on the earth.
Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:
If the package is barely lifted, that means that T=m_2*g; then:
Solving the equation for a_mín, we have:
Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey:
For the package:
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package:
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:
Solving a, we have
We can then replace this value of a in one for the sums of force and find the tension T: