1. A wheelchair ramp. Instead of using lifting force on the wheelchair, You use push or pull force on it.
2. A slide. Instead of throwing down an item, It uses gravitational potential energy make an object "move" down the slide.
3.A screw. It's reducing the force by twisting the screw out of something instead of pulling it out. (Sorry about my bad grammar).
Answer:
1 cm⁻¹ =1.44K 1 ev = 1.16 10⁴ K
Explanation:
The relationship between temperature and thermal energy is
E = K T
The relationship of the speed of light
c =λ f = f / ν 1/λ= ν
The Planck equation is
E = h f
Let's start the transformations
c = f λ = f / ν
f = c ν
E = h f
E = h c ν
E = KT
h c ν = K T
T = h c ν / K =( h c / K) ν
Let's replace the constants
h = 6.63 10⁻³⁴ J s
c = 3 10⁸ m / s
K = 1.38 10⁻²³ J / K
v = 1 cm-1 (100 cm / 1 m) = 10² m-1
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²
A = h c / K = 1,441 10⁻²
T = 1.44K
ν = 103 cm⁻¹ = 103 10² m
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²
T = 148K
1 Rydberg = 1.097 10 7 m
As we saw at the beginning the λ=1 / v
T = (h c / K) 1 /λ
T = 1,441 10⁻² 1 / 1,097 10⁷
T = 1.3 10⁻⁹ K
E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J
E = KT
T = E/K
T = 1.6 10⁻¹⁹ /1.38 10⁻²³
T = 1.16 10⁴ K
In this item, we are asked to determine the speed of the bobsled given the distance traveled and the time it takes to cover the certain distance. This can mathematically be expressed as,
speed = distance / time
Substituting the given values in this item,
speed = (113 m) / (29 s)
speed = 3.90 m/s
<em>ANSWER: 3.90 m/s</em>
The springs stored energy is transferred to the cube as kinetic energy and then by the slop the KE is converted to height energy.
<span>0.5 . k . x^2 = 0.5 . m . v^2 = m . g . ∆h </span>
<span>0.5 . 50 . (0.1^2) = 0.05 . 9.8 . ∆h </span>
<span>∆h = 0.51 m = 51 cm </span>
<span>This is the height gained </span>
<span>Distance along the slope = ∆h / sin 60 = 0.589 = 59 cm </span>
<span>In the second case, the stored spring energy is converted into height energy AND frictional heat energy. </span>
<span>The height energy is m . g . d sin 60 where d is the distance the cube moves along the slope. </span>
<span>The Frictional energy converted is F . d </span>
<span>F ( the frictional force ) = µ . N </span>
<span>N ( the reaction to the component of the gravity force perpendicular to the surface of the slope ) = m . g . cos60 </span>
<span>Total energy converted </span>
<span>0.5 . k . x^2 = (m . g . dsin60) + (µ . m . g . cos60 . d ) </span>
<span>Solve for d </span>
<span>d = 0.528 = 53 cm</span>
Answer:
because they are the rocks that line the surface of our planet
Explanation:
We see sedimentary rocks more than other rock types because they are the rocks that line the surface of our planet.
Sedimentary rocks typically form the earth cover due to the way they are formed.
- These rocks are produced by the weathering, transportation and deposition of sediments within a basin.
- In this basin, the sediment is lithified and converted to sedimentary rocks.
- These processes are driven by the external heat engine
- Therefore, it is confined to the surface.
- Igneous and metamorphic rock's processes are confined to the subsurface.