Answer:
It is calculated by dividing Resistance, R, by Inductive reactance, XL.
Explanation:
Q is called the Q factor of a resonance circuit. In a parallel resonance circuit, it is calculated by finding the ratio of the power stored in the circuit to the power distributed in the circuit. It is a way of measuring the quality of a circuit or how effective the circuit is.
Q factor is the inverse in the resonance series circuit.
Q factor of a resonance parallel circuit,
<h3>
Q = R/XL</h3>
R = Resistance
XL = Inductive reactance
Neap tide = tide where there is the least difference between high and low water levels
Spring tide = tide where there is the greatest difference between high and low water levels
Equator = an imaginary line drawn around earth dividing it into northern and southern hemispheres
Seasons = the divisions of the year marked by specific weather patterns and daylight hours.
Hope this helps!
1. A. 6.00 sec
The graph shows the velocity of an object (y-axis) versus the time (x-axis). In order to find when the magnitude of the velocity reaches 36.00 km/h, we should find the time t (x-coordinate) at which the velocity (y-coordinate) is 36.
By looking at the graph, we see that this occurs when t=6.00 s.
2. A. positive acceleration
In a velocity-time graph like this one, the slope of the curve corresponds to the acceleration of the object. In fact, acceleration is defined as:

where
is the variation of velocity and
is the variation of time. We see that this quantity corresponds to the slope of the curve in the graph (in fact,
represents the increment of the y coordinate, while
represents the increment of the x coordinate). So, a positive slope means a positive acceleration: in this case, the slope is positive, so the acceleration is also positive.
Answer:
Explanation:
We shall convert all the displacement in vector form .
i and j represents east and north respectively .
D₁ = 4 i
D₂ = 4 j
D₃ = - 5 cos 53.1 i + 5 sin 53.1 j
= -3i + 4 j
Total displacement = D₁ + D₂ + D₃
= 4i + 4 j - 3i + 4 j
= i + 8j
magnitude of displacement = √( 1² + 8² )
= 8.06 km
velocity = 8.06 / 5
= 1.61 km / h
Direction from x axis in anticlockwise direction .
Tanθ = 8 / 1 = 8
θ = 83° north of east .
Given :
A 13.3 kg box sliding across the ground decelerates at 2.42 m/s².
To Find :
The coefficient of kinetic friction.
Solution :
Frictional force applied to the box is :
....1)
Also, force of friction is given by :
....2)
Equating equation 1) and 2), we get :

Therefore, the coefficient of kinetic friction is 0.247 .