1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djverab [1.8K]
3 years ago
13

Long Snorkel: Inhalation of a breath occurs when the muscles surrounding the human lungs move to increase the volume of the lung

s, thereby reducing the air pressure in the lungs. The difference between the reduced pressure in the lungs and outside atmospheric pressure causes a flow of air into the lungs. The maximum reduction in air pressure that muscles of the chest can produce in the lungs against the surrounding air pressure on the chest and body is about 3740 Pa. Consider the longest snorkel that a human can operate. The minimum pressure difference needed to take in a breath is about 188 Pa. Find the depth h that a person could swim to and still breathe with this snorkel
Physics
1 answer:
Mila [183]3 years ago
4 0

Answer:

h = 0.362 m

Explanation:

The pressure equation with depth is

      P₂ = P_{atm} +ρ g h

The gauge pressure is

       P2 -  P_{atm} = ρ g h

This is the pressure that muscles can create

       P₂ -  P_{atm}= 3740 Pa

But still the person needs a small pressure for the transfer of gases, so

      P₂ -  P_{atm} = 3740 - 188 = 3552 Pa

This is the maximum pressure difference, where the person can still breathe,

Let's clear the height

      h = 3552 / ρ g

      h = 3552 / (1000 9.8)

      h = 0.362 m

This is the maximum depth where the person can still breathe normally.

You might be interested in
Three-fourths of the elements on the
77julia77 [94]

Answer:

b

Explanation:

because the metalloids are the thing in the middle

8 0
3 years ago
A 2.0 kg sphere with a velocity of 6.0 m/s collides head-on and elastically with a stationary 10 kg sphere
dmitriy555 [2]

Question: A 2.0 kg sphere with a velocity of 6.0 m/s collides head-on and elastically with a stationary 10 kg sphere, What is thier velocities after collision.

Answer:

v = 6 m/s, v' = 0 m/s

Explanation:

From the question,

For Elastic collision,

mu+m'u' = mv+m'v'......................... Equation 1

Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, v = final veolocity of the first sphere, v' = final velocity of the second sphere.

Also,

The relative velocity before collision = relative velocity after collision

u-u' = v-v'............................ Equation 2

Given:  m = 2 kg, m' = 10 kg, u = 6 m/s, u' = 0 m/s

Substitute into equation 1 and 2

2(6)+10(0) = 2v+10v'

2v+10v' = 12.............. Equation 3

6-0 = v-v'

v-v' = 6 ................... Equation 4

Solve equation 3 and 4 simultaneously.

v = 6+v'............. Equation 5

Substitute equation 5 into equation 3

2(6+v')+10v' = 12

12+2v'+10v' = 12

12v' = 12-12

v' = 0/12

v' = 0 m/s.

Also substitute the value of v' into equation 5

v = 6+0

v = 6 m/s

5 0
3 years ago
In which medium does light travel faster: one with a critical angle of 27.0° or one with a critical angle of 32.0°? Explain. (Fo
Eddi Din [679]

Answer:

Among those two medium, light would travel faster in the one with a reflection angle of 32^{\circ} (when light enters from the air.)

Explanation:

Let v_{1} denote the speed of light in the first medium. Let v_{\text{air}} denote the speed of light in the air. Assume that the light entered the boundary at an angle of \theta_{1} to the normal and exited with an angle of \theta_{\text{air}}. By Snell's Law, the sine of \theta_{1}\! and \theta_{\text{air}}\! would be proportional to the speed of light in the corresponding medium. In other words:

\displaystyle \frac{v_{1}}{v_{\text{air}}} = \frac{\sin(\theta_{1})}{\sin(\theta_{\text{air}})}.

When light enters a boundary at the critical angle \theta_{c}, total internal reflection would happen. It would appear as if the angle of refraction is now 90^{\circ}. (in this case, \theta_{\text{air}} = 90^{\circ}.)

Substitute this value into the Snell's Law equation:

\begin{aligned}\frac{v_{1}}{v_{\text{air}}} &= \frac{\sin(\theta_{1})}{\sin(\theta_{\text{air}})} \\ &= \frac{\sin(\theta_{c})}{\sin(90^{\circ})} \\ &= \sin(\theta_{c})\end{aligned}.

Rearrange to obtain an expression for the speed of light in the first medium:

v_{1} = v_{\text{air}} \cdot \sin(\theta_{1}).

The speed of light in a medium (with the speed of light slower than that in the air) would be proportional to the critical angle at the boundary between this medium and the air.

For 0 < \theta < 90^{\circ}, \sin(\theta) is monotonically increasing with respect to \theta. In other words, for \!\theta in that range, the value of \sin(\theta)\! increases as the value of \theta\! increases.

Therefore, compared to the medium in this question with \theta_{c} = 27^{\circ}, the medium with the larger critical angle \theta_{c} = 32^{\circ} would have a larger \sin(\theta_{c}). such that light would travel faster in that medium.

4 0
3 years ago
wo lacrosse players collide in midair. Jeremy has a mass of 120 kg and is moving at a speed of 3 m/s. Hans has a mass of 140 kg
Julli [10]

2.71 m/s fast Hans is moving after the collision.

<u>Explanation</u>:

Given that,

Mass of Jeremy is 120 kg (M_J)

Speed of Jeremy is 3 m/s (V_J)

Speed of Jeremy after collision is (V_{JA}) -2.5 m/s

Mass of Hans is 140 kg (M_H)

Speed of Hans is -2 m/s (V_H)

Speed of Hans after collision is (V_{HA})

Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is  

= =\mathrm{M}_{1} \times \mathrm{V}_{\mathrm{J}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{H}}

Substitute the given values,

= 120 × 3 + 140 × (-2)

= 360 + (-280)

= 80 kg m/s

Linear momentum after the collision of Jeremy and Hans is  

= =\mathrm{M}_{\mathrm{J}} \times \mathrm{V}_{\mathrm{JA}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{HA}}

= 120 × (-2.5) + 140 × V_{HA}

= -300 + 140 × V_{HA}

We know that conservation of liner momentum,

Linear momentum before the collision = Linear momentum after the collision

80 = -300 + 140 × V_{HA}

80 + 300 = 140 × V_{HA}

380 = 140 × V_{HA}

380/140= V_{HA}

V_{HA} = 2.71 m/s

2.71 m/s fast Hans is moving after the collision.

4 0
3 years ago
Heat flows into a gas in a piston and work is performed on the gas by its surroundings. The amount of work done is equal to the
inna [77]

Answer:

The Internal energy of the gas did not change

Explanation:

In this situation the Internal energy of the gas did not change and this is because according the the first law of thermodynamics

Δ U = Q - W  ------ ( 1 )

Δ U  = change in internal energy

Q = heat added

W = work done

since Q = W.  the value of ΔU  will be = zero   i.e. No change

4 0
3 years ago
Other questions:
  • What phase are daughter cells in as a result of mitosis
    14·1 answer
  • What are some examples of pressure
    10·1 answer
  • Using a cathode ray tube, Thomson confirmed that
    10·2 answers
  • What relationship does mass have with inertia
    6·1 answer
  • Jessica Jacob is driving down the road at 35 m/s. She sees a cop and slows to 20 m/s in only 2 seconds. What was her acceleratio
    5·1 answer
  • In a population of seals, most of the seals have similar coloring. However, one seal has albinism. This seal is white and is alm
    13·2 answers
  • An airplane wing is designed to make the air move
    8·1 answer
  • At its nearest, Venus comes within about 41 million km of Earth. How distant is it at its farthest?
    8·2 answers
  • When unbalanced forces act on an object, __________________. the object accelerates friction becomes greater than the net force
    14·1 answer
  • Which statements are true about the speed of a wave?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!