The Electric field is zero at a distance 2.492 cm from the origin.
Let A be point where the charge
C is placed which is the origin.
Let B be the point where the charge
C is placed. Given that B is at a distance 1 cm from the origin.
Both the charges are positive. But charge at origin is greater than that of B. So we can conclude that the point on the x-axis where the electric field = 0 is after B on x - axis.
i.e., at distance 'x' from B.
Using Coulomb's law,
,
= 



k is the Coulomb's law constant.
On substituting the values into the above equation, we get,

Taking square roots on both sides and simplifying and solving for x, we get,
1.67x = 1+x
Therefore, x = 1.492 cm
Hence the electric field is zero at a distance 1+1.492 = 2.492 cm from the origin.
Learn more about Electric fields and Coulomb's Law at brainly.com/question/506926
#SPJ4
let us consider that the two charges are of opposite nature .hence they will constitute a dipole .the separation distance is given as d and magnitude of each charges is q.
the mathematical formula for potential is 
for positive charges the potential is positive and is negative for negative charges.
the formula for electric field is given as-
for positive charges,the line filed is away from it and for negative charges the filed is towards it.
we know that on equitorial line the potential is zero.hence all the points situated on the line passing through centre of the dipole and perpendicular to the dipole length is zero.
here the net electric field due to the dipole can not be zero between the two charges,but we can find the points situated on the axial line but outside of charges where the electric field is zero.
now let the two charges of same nature.let these are positively charged.
here we can not find a point between two charges and on the line joining two charges where the potential is zero.
but at the mid point of the line joining two charges the filed is zero.
It would be option C. It rotates, or spins, on its axis, but it revolves around the sun.
Answer:
the speed of the ball is 10 m/s
Explanation:
Given;
magnitude of exerted force, F = 400 N
mass of the ball, m = 2 kg
radius of the circle, r = 0.5
The speed of the ball is calculated by applying centripetal force formula;

Therefore, the speed of the ball is 10 m/s
Answer:
even if it all could be used, it wouldn't be enough
Explanation:
The land area of the US is about 5.45% of the world's area, so the amount of released heat over the area of the US is on the order of 2.4 Tw. Current technology for converting geothermal energy to electricity is about 12% efficient, so the available energy might amount to 0.29 Tw if it could all be captured.
Energy consumption in the US in 2019 was on the order of 0.46 Tw. This suggests that even if <em>all</em> of the thermal energy radiated by the Earth from the US could be turned to useful forms of energy, it would meet only about 60% of the US need for energy.