The reaction;
O(g) +O2(g)→O3(g), ΔH = sum of bond enthalpy of reactants-sum of food enthalpy of products.
ΔH = ( bond enthalpy of O(g)+bond enthalpy of O2 (g) - bond enthalpy of O3(g)
-107.2 kJ/mol = O+487.7kJ/mol =O+487.7 kJ/mol +487.7kJ/mol =594.9 kJ/mol
Bond enthalpy (BE) of O3(g) is equals to 2× bond enthalpy of O3(g) because, O3(g) has two types of bonds from its lewis structure (0-0=0).
∴2BE of O3(g) = 594.9kJ/mol
Average bond enthalpy = 594.9kJ/mol/2
=297.45kJ/mol
∴ Averange bond enthalpy of O3(g) is 297.45kJ/mol.
It is energetically favorable for all atoms to have a complete outer
electron shell. Loosely, the atoms on the left hand side of the periodic
table only have a few extra electrons in their outer shell so it is
energetically favorable for them to lose them. The atoms on the right
hand side of the periodic table almost have enough electrons in their
outer shell and so they have a tendency to gain them.
Once electrons have left an electron shell, an atom will have a positive
charge because it has more protons (positive charges) than electrons
(negative charges). Similarly, an electron which has gained electrons to
complete its outer shell will have a negative charge because it now has
more electrons (negative charge) than protons (positive charge).
2021 hoped I helped you god bless you
C I think it’s C I’m semi guessing