Answer:
√2(√3 - 1)/4
Step-by-step explanation:
To find an exact value for Cos75°, we use the compound angle formula. Since 75° = 45° + 30°, Cos75° = Cos(45° + 30°).
Using Cos(A + B) = CosACosB - SinASinB where A = 45° and B = 30°,
Cos75° = Cos(45° + 30°) = Cos45°Cos30° - Sin45°Sin30°
Now Cos45° = Sin45° = 1/√2 = √2/2, Cos30° = √3/2 and Sin30° = 1/2.
Substituting these values into the above equation, we have
Cos75° = Cos(45° + 30°)
= Cos45°Cos30° - Sin45°Sin30°
= √2/2 × √3/2 - √2/2 × 1/2
= √6/4 -√2/4
= √2(√3 - 1)/4
Answer:
n= 2/-7
Step-by-step explanation:
2/n = -7
Multiply by n: 2= -7n
Divide by -7: n= 2/-7, or n= -0.286
Step-by-step explanation:
The equation of a parabola with focus at (h, k) and the directrix y = p is given by the following formula:
(y - k)^2 = 4 * f * (x - h)
In this case, the focus is at the origin (0, 0) and the directrix is the line y = -1.3, so the equation representing the cross section of the reflector is:
y^2 = 4 * f * x
= 4 * (-1.3) * x
= -5.2x
The depth of the reflector is the distance from the vertex to the directrix. In this case, the vertex is at the origin, so the depth is simply the distance from the origin to the line y = -1.3. Since the directrix is a horizontal line, this distance is simply the absolute value of the y-coordinate of the line, which is 1.3 inches. Therefore, the depth of the reflector is approximately 1.3 inches.