To solve this problem we will apply Newton's second law and the principle of balancing Forces on the rope. Newton's second law allows us to define the weight of the mass, through the function

Here,
m = mass
a = g = Gravitational acceleration
Replacing we have that the weight is


Since the rope is taut and does not break, the net force on the rope will be zero.




Therefore the tensile force in the rope is 98N
Answer:
<h3><em>
28.01m/s.</em></h3>
Explanation:
Given maximum height reached by the ball as H = 40 metres
Since the ball rises straight up when hit by a ball, then the angle of launch will be perpendicular to the ground and that is 90°.
To determine the upward speed of the ball in meters per second after it got struck by the bat, we will use the formula for calculating the maximum height according to projectile motion;
Maximum Height H =
where;
u is the speed of the ball
is the angle of launch
g is the acceleration due to gravity = 9.81m/s²
Substituting the given parameters into the formula;

<em>Hence the upward speed of the ball in meters per second after it got struck by the bat is 28.01m/s.</em>
The following that describes how outer space, air, and
glass affect the speed of light is that light travels fastest through outer space, it travels somewhat slower though
air, and of these three, it travels the slowest through glass. The answer is
letter B.
Answer:
Zero Acceleration.
Explanation:
If an object is at equilibrium, then the forces are balanced. Balanced is the key word that is used to describe equilibrium situations. Thus, the net force is zero and the acceleration is 0 m/s/s. Objects at equilibrium must have an acceleration of 0 m/s/s.
Answer: 757m/s
Explanation:
Given the following :
Mole of neon gas = 1.00 mol
Temperature = 465k
Mass = 0.0202kg
Using the ideal gas equation. For calculating the average kinetic energy molecule :
0.5(mv^2) = 3/2 nRt
Where ;
M = mass, V = volume. R = gas constant(8.31 jK-1 mol-1, t = temperature in Kelvin, n = number of moles
Plugging our values
0.5(0.0202 × v^2) = 3/2 (1 × 8.31 × 465)
0.0101 v^2 = 5796.225
v^2 = 5796.225 / 0.0101
v^2 = 573883.66
v = √573883.66
v = 757.55109m/s
v = 757m/s