A) A concave mirror forming a larger, virtual image
Explanation:
The figure is missing; see attachment.
There are two types of mirror:
- Concave (converging) mirrors: a concave mirror is a mirror that reflects the light inward
- Convex (diverging) mirrors: a convex mirror is a mirror that reflects the light outward
The image formed by a mirror can also be of two types:
- Real image: it is formed on the same side of the object, with respect to the mirror
- Virtual image: it is formed on the opposite side of the object, with respect to the mirror
In the figure of this problem (see attachment), we see that:
- The mirror reflects the light from the object inward --> so it is a concave mirror
- The image is formed on the other side of the mirror --> it is a virtual image
So the correct option is
A) A concave mirror forming a larger, virtual image
Learn more about mirrors:
brainly.com/question/8737441
#LearnwithBrainly
Answer:
T = 120.3 N
Explanation:
Since, the tension in the rope is acting against both the centripetal force and the weight of the stone. As both act downward towards center of the circle and tension acts towards point of support that is upward. So, tension will be equal to the sum of centripetal force and weight of the stone:
Tension = Centripetal Force + Weight of Stone
T = mv²/r + mg
where,
m = mass of stone = 5.31 kg
r = radius of circle = length of string = 2.99 m
g = 9.8 m/s²
Therefore,
T = (5.31 kg)(6.2 m/s)²/(2.99 m) + (5.31 kg)(9.8 m/s²)
T = 68.27 N + 52.03 N
<u>T = 120.3 N</u>
(a) 
The frequency of a wave is given by:

where
v is the wave's speed
is the wavelength
For the red laser light in this problem, we have
(speed of light)

Substituting,

(b) 427.6 nm
The wavelength of the wave in the glass is given by

where
is the original wavelength of the wave in air
n = 1.48 is the refractive index of glass
Substituting into the formula,

(c) 
The speed of the wave in the glass is given by

where
is the original speed of the wave in air
n = 1.48 is the refractive index of glass
Substituting into the formula,
