Answer:
1) true
2) false
3) false
4) true
5) true
6) true
7) true
8) false
9) true
10) false
i think these are correct if im wrong on a few im sorry. Hope this helps at least a bit. And if i do get some wrong you know just to pick the opposite answer.
Answer:
1456 N
Explanation:
Given that
Frequency of the piano, f = 27.5 Hz
Entire length of the string, l = 2 m
Mass of the piano, m = 400 g
Length of the vibrating section of the string, L = 1.9 m
Tension needed, T = ?
The formula for the tension is represented as
T = 4mL²f²/ l, where
T = tension
m = mass
L = length of vibrating part
F = frequency
l = length of the whole part
If we substitute and apply the values we have Fri. The question, we would have
T = (4 * 0.4 * 1.9² * 27.5²) / 2
T = 4368.1 / 2
T = 1456 N
Thus, we could conclude that the tension needed to tune the string properly is 1456 N
Answer : The final volume of the balloon at this temperature and pressure is, 17582.4 L
Solution :
Using combined gas equation is,
where,
= initial pressure of gas = 1 atm
= final pressure of gas = 0.3 atm
= initial volume of gas = 6000 L
= final volume of gas = ?
= initial temperature of gas = 273 K
= final temperature of gas = 240 K
Now put all the given values in the above equation, we get the final pressure of gas.

Therefore, the final volume of the balloon at this temperature and pressure is, 17582.4 L
The greater the MASS of a moving object, the more kinetic energy it has. <3