Answer: There are
molecules
gas are in 756.2 L.
Explanation:
It is known that 1 mole of any gas equals 22.4 L at STP. Hence, number of moles present in 756.2 L are calculated as follows.

According to mole concept, 1 mole of every substance contains
molecules.
Therefore, molecules of S present in 33.76 moles are calculated as follows.

Thus, we can conclude that there are
molecules
gas are in 756.2 L.
Answer:
Four possible isomers (1–4) for the natural product essramycin. The structure of compound 1 was attributed to essramycin by 1H NMR, 13C NMR, HMBC, HRMS, and IR experiments.
Explanation:
Three synthetic routes were used to prepare all four compounds (Figure 2A). All three reactions utilize 2-(5-amino-4H-1,2,4-triazol-3-yl)-1-phenylethanone (5) as the precursor, whereas each uses different esters (6–8) to construct the pyrimidinone ring. Isomer 1 was prepared by reaction A, which used triazole 5 and ethyl acetoacetate (6) in acetic acid. This was the reaction used in syntheses of essramycin by the Cooper and Moody laboratories.3,4 Reaction B produced compound 2 (minor product) and compound 3 (major product), which were separated chromatographically. This reaction allowed reagent 5 to react with ethyl 3-ethoxy-2-butenoate (7) in the presence of sodium in methanol, under reflux for 24 h. Compound 4 was prepared by reaction C, which was obtained by reflux of 5 and methyl 2-butynoate (8) in n-butanol.
True because it is warmer closer to the equator
D
A describes liquid, b describes solid, and c describes solid as well. therefore d is the only good answer