Answer: Eclipse
Explanation: A lunar eclipse occurs when the full moon moves through the shadow of the Earth. This can only happen when the Earth is between the Moon and the Sun and all three are lined up in the same plane, called the ecliptic. The ecliptic is the plane of Earth's orbit around the Sun.
Answer:
When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.
Answer:
t = 0.319 s
Explanation:
With the sudden movement of the athlete a pulse is formed that takes time to move along the rope, the speed of the rope is given by
v = √T/λ
Linear density is
λ = m / L
λ = 4/20
λ = 0.2 kg / m
The tension in the rope is equal to the athlete's weight, suppose it has a mass of m = 80 kg
T = W = mg
T = 80 9.8
T = 784 N
The pulse rate is
v = √(784 / 0.2)
v = 62.6 m / s
The time it takes to reach the hook can be searched with kinematics
v = x / t
t = x / v
t = 20 / 62.6
t = 0.319 s
Answer:
C. Code of ethics
Explanation:
The code of ethics of a company is the document where all the values that the members of the company should live and obbey, they are often guideliness on how to act and beheave and how to treat customers, providers and co-workers. IT also has all of the standards for all managers ethical responsabilities, and ethical responsabilities of the general of the employees of the company.
Hey there!
Your correct answer would be (<span>
Every mass exerts a gravitational force on every other mass.) It really doesn't matter the size in mass what so ever, gravity is stronger than mass, mass in nothing compared to mass. Therefor, gravity exert's mass on any object with any size of mass.
Your correct answer would be
. . .
</span>

<span>
Hope this helps.
~Jurgen</span>