Answer:
B) What is the enthalpy change, ∆H, for this reaction? Show your work to receive full credit (5 points) The enthalpy change is 150. To find it we must subtract energy of products (200) & the energy of reactants (50) so 200 – 50 equals 150.
Explanation:
B) What is the enthalpy change, ∆H, for this reaction? Show your work to receive full credit (5 points) The enthalpy change is 150. To find it we must subtract energy of products (200) & the energy of reactants (50) so 200 – 50 equals 150.
Answer:
k = 49 N/m
Explanation:
Given that,
Mass, m = 250 g = 0.25 kg
When the mass is attached to the end of the spring, it elongates 5 cm or 0.05 m. We need to find the spring constant. Let it is k.
The force due to mass is balanced by its weight as follows :
mg=kx

So, the spring constant of the spring is 49 N/m.
Answer:
<u>: WHY DIDN'T THE POD DOCK LIKE IT WAS SUPPOSED TO DO?</u><u> </u>
<u>ANSWER</u><u>;</u>
The force exerted by the thrusters caused the pod to change direction.
WHAT NEW THEORIES DO YOU HAVE?
ANSWER;
This pod moved differently because it was more massive.
<em><u>C</u></em><em><u>A</u></em><em><u>R</u></em><em><u>R</u></em><em><u>Y</u></em><em><u>O</u></em><em><u>N</u></em><em><u>L</u></em><em><u>E</u></em><em><u>A</u></em><em><u>R</u></em><em><u>N</u></em><em><u>I</u></em><em><u>N</u></em><em><u>G</u></em><em><u>:</u></em><em><u>)</u></em>
Answer:
Explanation:
PE = mgh = 60(9.8)(2.0) = 1176 J
We know that
g = LcosΘ
<span>where g, L and Θ are centripetal gravity length, and angle of object
</span><span>ω² = g/LcosΘ </span>
<span>ω = √(g / LcosΘ) </span>