Answer: Sound waves are sound and oceans waves are water waves. Water waves are bigger
Explanation:
<h3>
Answer:</h3>
3.01 × 10²⁵ molecules H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.0 mol H₂O
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁵ molecules H₂O
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁵ molecules H₂O ≈ 3.01 × 10²⁵ molecules H₂O
Answer:
Random particle motion in liquids and gases is a difficult concept for in temperature, the particles move faster as they gain kinetic energy.
Explanation:
Answer:

Explanation:
Although the context is not clear, let's look at the oxidation and reduction processes that will take place in a Fe/Sn system.
The problem states that anode is a bar of thin. Anode is where the process of oxidation takes place. According to the abbreviation 'OILRIG', oxidation is loss, reduction is gain. Since oxidation occurs at anode, this is where loss of electrons takes place. That said, tin loses electrons to become tin cation:

Similarly, iron is cathode. Cathode is where reduction takes place. Reduction is gain of electrons, this means iron cations gain electrons and produce iron metal:

The net equation is then:

However, this is not the case, as this is not a spontaneous reaction, as iron metal is more reactive than tin metal, and this is how the coating takes place. This implies that actually anode is iron and cathode is tin:
Actual anode half-equation:

Actual cathode half-equation:

Actual net reaction:

Answer: hello mason
Explanation: figure it out yourself