The final temperature of the gas given the data from the question is 1527 °C
<h3>Data obtained from the question</h3>
- Initial volume (V₁) = V
- Initial temperature (T₁) = 27 °C = 27 + 273 = 300 K
- Final volume (V₂) = 6V
- Final temperature (T₂) =?
<h3>How to determine the new temperature </h3>
The final temperature of the gas can be obtained by using the Charles' law equation as illustrated below:
V₁ / T₁ = V₂ / T₂
V / 300 = 6V / T₂
Cross multiply
V × T₂ = 300 × 6V
Divide both side by V
T₂ = (300 × 6V) / V
T₂ = 1800 K
Subtract 273 from 1800 K to express in degree celsius
T₂ = 1800 – 273
T₂ = 1527 °C
Learn more about gas laws:
brainly.com/question/6844441
#SPJ1
As we know that KE and PE is same at a given position
so we will have as a function of position given as

also the PE is given as function of position as

now it is given that
KE = PE
now we will have




so the position is 0.707 times of amplitude when KE and PE will be same
Part b)
KE of SHO at x = A/3
we can use the formula

now to find the fraction of kinetic energy



now since total energy is sum of KE and PE
so fraction of PE at the same position will be


Answer:
563.86 N
Explanation:
We know the buoyant force F = weight of air displaced by the balloon.
F = ρgV where ρ = density of air = 1.29 kg/m³, g = acceleration due to gravity = 9.8 m/s² and V = volume of balloon = 4πr/3 (since it is a sphere) where r = radius of balloon = 2.20 m
So, F = ρgV = ρg4πr³/3
substituting the values of the variables into the equation, we have
F = 1.29 kg/m³ × 9.8 m/s² × 4π × (2.20 m)³/3
= 1691.58 N/3
= 563.86 N
<h2>Answer: decreasing</h2>
An RC circuit is an electrical circuit composed of resistors and capacitors, where the charging time
of the circuit is proportional to the magnitude of the electrical resistance
and the capacity
of the capacitor.
As shown below:
In this context, the electrical resistance is the opposition to the flow of electrons when moving through a conductor.
Therefore:
<h2>When a capacitor is being charged in an RC circuit, the current flowing through a resistor <u>decreases</u>.</h2>
And the correct option is b.