Without an atmosphere, the equatorial curve would show minimum daily values on the solstices in June when the sub-solar point is located at 23.5°N and in December when the sub-solar point is at 23.5°S latitude.
Explanation:
At the sub-solar point, the sun strikes directly at the surface with an angle of 90 degrees at a given point.
Solistice refers to that point in time when the sun’s zenith is located at the farthest point from the equator.
During summer solistice on June 21, the sun’s zenith reaches northernmost point, sub-solar point is fixed at 23.5°S Tropic of Cancer making the earth tilt 23.4 degrees
During winter soliscitse on December 21, the sub-solar point is fixed at) Tropic of Capricorn.
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have:
Answer:
201.5537 mph
Explanation:
Given the following data;
Speed = 90.1 m/s
Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.
Mathematically, speed is given by the formula;
Speed = distance/time
To convert this value into miles per hour;
Conversion;
1 meter = 0.000621 mile
90.1 meters = 90.1 * 0.000621 = 0.05595 miles
1 metre per second = 2.237 miles per hour
90.1 meters per seconds = 90.1 * 2.237 = 201.5537 miles per hour
90.1 m/s = 201.5537 mph
Answer:
25/30 = 5/6 m/s^2 5/6 meters per second squared
Tectonic plates and convection cells move tectonic plates