Chemicals dissolved in water. Calcite is a good example, if I'm not mistaken.
The reaction is properly written as
Mg₃N₂ (s) + 3 H₂O (l) --> 2 NH₃<span> (g) + 3 MgO (s)
Molar mass of Mg</span>₃N₂ = 100.95 g/mol
Molar mass of H₂O = 18 g/mol
Molar mass of MgO = 40.3 g/mol
Moles Mg₃N₂: 3.82/100.95 = 0.0378
Moles H₂O: 7.73/18 = 0.429
Theo H₂O required for available Mg₃N₂: 0.0378*3/1 = 0.1134 mol
Hence, the limiting reactant is Mg₃N₂.
Thus,
Theoretical Yield = 0.0378 mol Mg₃N₂ * 3 mol MgO/Mg₃N₂ * 40.3 g/mol
Theo Yield = 4.57 g
Percent Yield = Actual Yield/Theo Yield * 100
Percent Yield = 3.60 g/4.57 g * 100 =<em> 78.77%</em>
Answer:
higher data rates are
Explanation:
transmitted
as the bandwidth
is more
more antenna gain is possible
Answer:
But since the solubility product constant for each compound is provided, their relative solubility can be ranked from highest to lowest. Depending on the ranking above, it is evident that aluminum hydroxide Al(OH)3 A l ( O H ) 3 has the lowest solubility at 25 Celsius degreesAs temperature increases, its solubility increases as well. Notice, however, that it does not increase significantly. In fact, you can expect to be able to dissolve no more than 40 g of sodium chloride per 100 g of water at 80∘C