1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ololo11 [35]
3 years ago
6

ΔP = 1.88 x 10^4 Pa. Use this answer to estimate the volume flow rate of blood from the head to the feet of a six-foot-tall pers

on assuming an effective radius of 23cm
Physics
1 answer:
Sveta_85 [38]3 years ago
7 0

Answer: 3765.66 \frac{m^{3}}{s}

Explanation:

We can solve this problem using the <u>Poiseuille equation</u>:

Q=\frac{\pi r^{4}\Delta P}{8\eta L}

Where:

Q  is the Volume flow rate

r=23 cm \frac{1 m}{100 cm}=0.23 m  is the effective radius

L=6 ft \frac{0.3048 m}{1 ft}=1.8288 m  is the length

\Delta P=1.88(10)^{4} Pa  is the difference in pressure

\eta=3(10)^{-3} Pa.s is the viscosity of blood

Solving:

Q=\frac{\pi (0.23 m)^{4}(1.88(10)^{4} Pa)}{8(3(10)^{-3} Pa.s)(1.8288 m)}

Q=3765.66 \frac{m^{3}}{s}

You might be interested in
Three equal point charges, each with charge 1.45 μCμC , are placed at the vertices of an equilateral triangle whose sides are of
LUCKY_DIMON [66]

Answer:

U = 80.91 J

Explanation:

In order to calculate the electric potential energy between the three charges you use the following formula:

U=k\frac{q_1q_2}{r_{1,2}}                  (1)

k: Coulomb's constant = 8.98*10^9Nm^2/C^2

q1: q2 charge

r1,2: distance between charges 1 and 2.

For the three charges you have:

U_T=k\frac{q_1q_2}{r_{1,2}}+k\frac{q_1q_3}{r_{1,3}}+k\frac{q_2q_3}{r_{2,3}}           (2)

You use the fact that q1=q2=q3=q and that the distance between charges are equal. Then, in the equation (2) you have:

q = 1.45μC = 1.45*10^-6C

r = 0.700mm = 0.700*10^-3m

U_T=3k\frac{q^2}{r}=3(8.98*10^9Nm^2/C^2)\frac{(1.45*10^{-6}C)}{0.700*10^{-3}m}\\\\U_T=80.91J

The electric potential energy between the three charges is 80.91 J

7 0
3 years ago
Un coche inicia un viaje de 450 km a las ocho de la mañana con una velocidad media de 90 km/h. ¿A qué hora llegará a su destino?
Artyom0805 [142]

Answer:

Llegara a su destino a la 1:00 pm

Explanation:

Si el coche va a 90 km/h buscamos un numero q al multiplicarlo por 90 nos de 450. Entonces 90×5 = 450, si hacemos la cuenta desde las ocho de la mañana mas las 5 horas del viaje terminaria llegando a su destino a la 1:00 pm.

5 0
3 years ago
A 500-kg roller coaster car travels with some initial velocity along a track that is 5 m above the ground. The car goes down a s
LUCKY_DIMON [66]

Answer:

12m/s

Explanation:

4 0
3 years ago
the presence of which magnetic feature best explains why a magnet can act a distance on other magnets or on objects containing c
katen-ka-za [31]

Magnetic fields

Explanation:

The presence of magnetic fields  best explains why a magnet can act a distance on other magnets or on objects containing certain metals.

  • Magnetic fields are lines of forces around a bar magnet.
  • These lines of forces attracts and repels other magnetic bodies and metallic bodies round it.
  • Magnetic lines of forces originates at the north pole and enters in the south pole.
  • Areas around a magnetic body are bounded by force fields.
  • A magnet has permanent magnetic fields round it.

learn more:

Electromagnet brainly.com/question/2191993

#learnwithBrainly

8 0
3 years ago
Two wires with the same resistance have the same diameter but different lengths. If wire 1 has length L 1 and wire 2 has length
SVEN [57.7K]

Answer with Explanation:

We are given that

Length of wire 1=L_1

Length of wire 2=L_2

Resistivity of copper wire=\rho_1=1.7\times 10^{-5}\Omega-m

Resistivity of aluminum wire=\rho_2=2.82\times 10^{-5}\Omega-m

Wire 1=Copper wire

Wire 2=Aluminum wire

Diameter of both wires are same and resistance of both wires are also same.

We know that

Resistance =\frac{\rho l}{A}

When diameter of wires are same then their cross section area are also same .

l=\frac{RA}{\rho}

When resistance and area are same then the length of wire depend upon the resistivity of wire .

The length of wire is inversely proportional to resistivity.

When resistivity is greater then the length of wire will be short and when the resistivity  is small then the length of wire will be large.

\rho_1

Therefore, L_1>L_2

Hence, the length of wire 1 (copper wire) is greater than the length of wire 2 (aluminum).

\frac{L_1}{L_2}=\frac{\frac{RA}{1.7\times 10^{-5}}}{\frac{RA}{2.82\times 10^{-5}}}=1.66

L_1=1.66L_2

7 0
3 years ago
Other questions:
  • A cannonball of mass 15 kg is fired vertically upward from a cannon with an initial speed of 20 m/s. The cannonball travels upwa
    6·1 answer
  • Calculate the acceleration of a skier heading down a 10.0º slope, assuming the coefficient of friction for waxed wood on wet sno
    15·1 answer
  • A startled armadillo leaps upward, rising 0.532 m in the first 0.202 s. (a) What is its initial speed as it leaves the ground? (
    11·1 answer
  • A 10.00 kg mass is attached to a 250N/m spring and set into vertical oscillation. When the mass is 0.50m above the equilibrium i
    15·1 answer
  • How many helium-filled balloons would it take to lift a person? Assume the person has a mass of 76 kg and that each helium-fille
    14·1 answer
  • A surface receiving sound is moved from its original position to a position three times farther away from the source of the soun
    8·1 answer
  • Which of the following traits might be considered an adaptation fora rabbit living in the Arctic?
    12·2 answers
  • Can someone give me 4 examples of comparing stars life cycle to mans life cycle
    6·1 answer
  • I’m stuck in B and D. which one is it?
    5·2 answers
  • L 5.1.5 Quiz: Electromagnetic Forces
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!