Answer:
25.97oC
Explanation:
Heat lost by aluminum = heat gained by water
M(Al) x C(Al) x [ Temp(Al) – Temp(Al+H2O) ] = M(H2O) x C(H2O) x [ Temp(Al+H2O) – Temp(H2O) ]
Where M(Al) = 23.5g, C(Al) = specific heat capacity of aluminum = 0.900J/goC, Temp(Al) = 65.9oC, Temp(Al+H2O)= temperature of water and aluminum at equilibrium = ?, M(H2O) = 55.0g, C(H2O)= specific heat capacity of liquid water = 4.186J/goC
Let Temp(Al+H2O) = X
23.5 x 0.900 x (65.9-X) = 55.0 x 4.186 x (X-22.3)
21.15(65.9-X) = 230.23(X-22.3)
1393.785 - 21.15X = 230.23X – 5134.129
230.23X + 21.15X = 1393.785 + 5134.129
251.38X = 6527.909
X = 6527.909/251.38
X = 25.97oC
So, the final temperature of the water and aluminum is = 25.97oC
A bottle.I has a neck and but a head
ANSWER IS (A)
EXPLANATION:
Bronsted-Lowry concept states that a substance is an acid if it can act as a H+ donor.
HCl in aqueous solution means that HCl is present in water, HCl + H2O --> H3O+ + Cl-. This reaction will take place, the H+ from HCl will be donated to H2O. So, HCl is a bronsted-lowry acid by definition.
However, Methanol (CH3OH) its written that it is liquid, i.e. pure methanol, CH3OH(l). It is both acidic as well as basic. when it is mixed with water then it behaves as an acid.
The last one ammonia in gas phase is also neutral because its not in water. if mixed in water it behaves as a base.