Types of Bonds can be predicted by calculating the
difference in electronegativity.
If, Electronegativity difference is,
Less
than 0.4 then it is Non Polar Pure Covalent
Between 0.4 and 1.7 then it is Polar Covalent
Greater than 1.7 then it is Ionic
For Br and Br,
E.N of Bromine = 2.96
E.N of Bromine = 2.96
________
E.N Difference
0.00 (Non Polar/Pure Covalent)
For N and O,
E.N of Oxygen = 3.44
E.N of Nitrogen = 3.04
________
E.N Difference
0.40 (Non Polar/Pure Covalent)
For P and H,
E.N of Hydrogen = 2.20
E.N of Phosphorous = 2.19
________
E.N Difference 0.01 (Non Polar/Pure Covalent)
For K and O,
E.N of Oxygen = 3.44
E.N of Potassium = 0.82
________
E.N Difference 2.62 (Ionic)
Answer:
½O 2 + 2e - + H 2O → 2OH.
Explanation:
Redox reactions - Higher
In terms of electrons:
oxidation is loss of electrons
reduction is gain of electrons
Rusting is a complex process. The example below show why both water and oxygen are needed for rusting to occur. They are interesting examples of oxidation, reduction and the use of half equations:
iron loses electrons and is oxidised to iron(II) ions: Fe → Fe2+ + 2e-
oxygen gains electrons in the presence of water and is reduced: ½O2 + 2e- + H2O → 2OH-
iron(II) ions lose electrons and are oxidised to iron(III) ions by oxygen: 2Fe2+ + ½O2 → 2Fe3+ + O2-
B should be 20 because only 1 oxygen goes into water
C is hydrogen because 2 hydrogens go into each water
Can't read anything beyond c
Answer:
Photons
Explanation:
A hot object emits photons of various energies, which propagate outwards from the object. When they hit another object, the photons can be absorbed, giving up their energy to the second object. This causes the atoms/molecules etc. to giggle around, rotate, vibrate etc., with the result that the second object heats up.
Answer:
1.0 moles of N2
Explanation:
since
1.0 × avogadro's no# = same answer for SO2 and N2
avogadro's no#= 6.02× 10²³