Answer:
Final pressure in (atm) (P1) = 6.642 atm
Explanation:
Given:
Initial volume of gas (V) = 12.5 L
Pressure (P) = 784 torr
Temperature (T) = 295 K
Final volume (V1) = 2.04 L
Final temperature (T1) = 310 K
Find:
Final pressure in (atm) (P1) = ?
Computation:
According to combine gas law method:

⇒ Final pressure (P1) = 5,048.18877 torr
⇒ Final pressure in (atm) (P1) = 5,048.18877 torr / 760
⇒ Final pressure in (atm) (P1) = 6.642 atm
Answer: The empirical formula is 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mas of H = 1.8 g
Mass of S = 56.1 g
Mass of O = 42.1 g
Step 1 : convert given masses into moles.
Moles of H =
Mass of S =
Moles of O=
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For H =
For S =
For O =
Converting to whole number ratios
The ratio of H: S: O= 2: 2: 3
Hence the empirical formula is 
Answer:
The answer to your question is: 0.1 M
Explanation:
data
Volume of AgNO3 = 20.00 ml
1000 ml -------------- 1 l
20 ml --------------- x
x = 20x 1 /1000 = 0.02
AgCl = 0.2867 g
MW of AgCl = 35.45 + 107.9 = 143.35 g
143.35 g -------------- 1 mol
0.2867 g ------------- x
x = 0.2867 x 1 / 143.35 = 0.002 moles of AgCl
From the balance reaction we see that the proportion of AgNO3 to AgCl is 1:1, then
1 mol of AgNO3 -------------------- 1 mol of AgCL
x --------------------- 0.002 moles of AgCl
x = 0.002 moles of AgNO3
This moles of AgNO3 are in 20 ml or 0.02 liters
So, Molarity = # moles/liter
Molarity = 0.002 moles/ 0.02 = 0.1 M
Answer:
Sublimation describes a solid turning directly into a gas. Melting occurs when a solid turns into a liquid. Water can, under the right circumstances, sublimate, though it usually melts at temperatures above 0 degrees Celsius or 32 degrees Fahrenheit.
Explanation: Carbon dioxide (CO2), however, is very different. The conditions that determine whether CO2 melts or sublimates are both temperature and atmospheric pressure.