1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maria [59]
3 years ago
11

Riddle of the day What gets wet while drying?

Physics
2 answers:
Ulleksa [173]3 years ago
4 0

Answer:

A towel!

Explanation:

The towel gets wet when it dries something off!

garri49 [273]3 years ago
4 0

Answer:

lol a towel?

Explanation:

because like- I don't know but you get where I'm coming from right?

You might be interested in
A capacitor is charged until it holds 5.0 j of energy. it is then connected across a 10-kω resistor. in 13.6 ms , the resistor d
prohojiy [21]

Answer:

The capacite is C=5.32 uF using the equations of voltage and energy in capacitance  

Explanation:

The energy holds is 5 J and the resistor dissipates 2J so the energy total is 3J

Using:

V_{t}= V_{o}e^{\frac{-t}{R*C} }

Voltage in this case is the energy dissipated so

E_{t}= E_{o}e^{\frac{-t}{R*C} }

\frac{\sqrt{E_t} }{\sqrt{E_o} } = e^{\frac{-t}{R*C} }

\frac{\sqrt{3 J} }{\sqrt{5J} } = e^{\frac{-13.6ms}{10kw*C} }

Using the equation to find capacitance

ln 0.775= e^{\frac{-13.6 x10^{3} }{10x10^{3}*C }} \\ln(0.775)= ln * e^{\frac{-13.6 x10^{3s} }{10x10^{3}*C }} \\\\ln(0.775)= {\frac{-13.6 x10^{3} }{10x10^{3}*C }} \\C= \frac{-13.6 x10^{-3} }{10x10x^{3}*ln(0.775) }

C= 5.32x10^{-6} F

C= 5.32 uF because u is the symbol for micro that is equal to 10^{-6}

8 0
3 years ago
Where is the near point of an normal eye when accidentally wear a contact lens with a power of +2.0 diopters?
Lerok [7]

Answer:

The near point of an eye with power of +2 dopters, u' = - 50 cm

Given:

Power of a contact lens, P = +2.0 diopters

Solution:

To calculate the near point, we need to find the focal length of the lens which is given by:

Power, P = \frac{1}{f}

where

f = focal length

Thus

f = \frac{1}{P}

f = \frac{1}{2} = + 0.5 m

The near point of the eye is the point distant such that the image formed at this point can be seen clearly by the eye.

Now, by using lens maker formula:

\frac{1}{f} = \frac{1}{u} + \frac{1}{u'}

where

u = object distance = 25 cm = 0.25 m = near point of a normal eye

u' = image distance

Now,

\frac{1}{u'} = \frac{1}{f} - \frac{1}{u}

\frac{1}{u'} = \frac{1}{0.5} - \frac{1}{0.25}

\frac{1}{u'} = \frac{1}{f} - \frac{1}{u}

Solving the above eqn, we get:

u' = - 0.5 m = - 50 cm

7 0
3 years ago
A car is traveling at 8 m/s accelerates at 3.1 m/s^2 to reach a final top speed of 56 m/s. How much time will pass before the ca
AlekseyPX

Please find attached photograph for your answer.

Hope it helps.

Do comment if you have any query.

3 0
3 years ago
What do electric forces between charges depend on?
bonufazy [111]

Electrostatic forces between charges depend on the product of
the sizes of the charges, and the distance between them.

We should also mention the item about whether the charges are
both the same sign or opposite signs.  That determines whether
the forces will pull them together or push them apart, which is a
pretty significant item.

6 0
3 years ago
Read 2 more answers
A slit has a width of W1 = 4.4 × 10-6 m. When light with a wavelength of λ1 = 487 nm passes through this slit, the width of the
Vitek1552 [10]

Answer:

The width of the central bright fringe on the screen is observed to be unchanged is 4.48*10^{-6}m

Explanation:

To solve the problem it is necessary to apply the concepts related to interference from two sources. Destructive interference produces the dark fringes.  Dark fringes in the diffraction pattern of a single slit are found at angles θ for which

w sin\theta = m\lambda

Where,

w = width

\lambda =wavelength

m is an integer, m = 1, 2, 3...

We here know that as sin\theta as w are constant, then

\frac{w_1}{\lambda_1} = \frac{w_2}{\lambda_2}

We need to find w_2, then

w_2 = \frac{w_1}{\lambda_1}\lambda_2

Replacing with our values:

w_2 = \frac{4.4*10^{-6}}{487}496

w_2 = 4.48*10^{-6}m

Therefore the width of the central bright fringe on the screen is observed to be unchanged is 4.48*10^{-6}m

3 0
3 years ago
Other questions:
  • During which stage of prenatal development does breathing movement begin?
    5·2 answers
  • How many neutrons would a element that has a atomic number of 22 and a atomic mass of 40 have? (this is not based on a element f
    14·1 answer
  • 1. Can someone help me with this? :) Which object is made of frozen gas, ice, and dust that orbits in the outermost reaches of t
    15·1 answer
  • An insulating plastic rod is charged by rubbing it with a wool cloth, and then brought to an initially neutral conducting metall
    15·1 answer
  • Sara and Sam went for a two-hour drive. According to the graph, between .75 hours and 1.25 hours into their trip, they
    6·2 answers
  • Match the units in the right hand column with the terms in the right hand column​
    14·2 answers
  • I really need the answer to this question please
    14·1 answer
  • When are zeros significant when found to the trailing (to the right) of the decimal point?
    7·1 answer
  • Please solve this for 15 points please dont put in a link.
    6·2 answers
  • M A spherical conductor has a radius of 14.0cm and a charge of 26.0σC . Calculate the electric field and the electric potential
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!