Answer:
From you getting close to them
Explanation:
Because its big brain time.
Since Astronaut and wrench system is isolated in the space and there is no external force on it
So here momentum of the system will remain conserved
so here we can say

initially both are at rest
so here plug in all values


so here the astronaut will move in opposite direction and its speed will be equal to 0.20 m/s
Answer:
43.96 L
Explanation:
We are given that





We know that


Substitute the values


Hence, the volume of balloon at -14.8 degree Celsius=43.96 L
Answer:

Explanation:
From the question we are told that:
Force P=88Ib
Mass of crate M_c=210Ib
Generally the equation for Frictional force F is mathematically given by


with 

Therefore since Static Friction supersedes applied force body remains at rest.
Frictional force =88Ib (negative)
