1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr Goodwill [35]
2 years ago
8

What would you do to increase resistance

Physics
2 answers:
valina [46]2 years ago
7 0
Yes...... ........... because it’s reusable
ratelena [41]2 years ago
6 0

Answer:

If this is electrical currents , make the wire longer, smaller diameter wires, heat it up

You might be interested in
The following are possible ways to express the quantity 0.391 (Give ALL correct answers, i.e., B, AC, BCD...) Note: 3.45E-8 is a
laiz [17]
To answer, evaluate the power of 10 in the given choices. If it is positve, move the decimal n places to the right. If it is negative, move the decimal n corresponding places to the left. From all the choices given, only the choices D, E, and F will give us the correct answer. 
4 0
3 years ago
A ball has a mass of 1.5kg and is thrown straight up with a speed of 60m/s, what is the ball’s momentum:
madam [21]

Answer:

Assumption: the air resistance on this ball is negligible. Take g = 10\; \rm m \cdot s^{-2}.

a. The momentum of the ball would be approximately 60\;\rm kg \cdot m \cdot s^{-1} two seconds after it is tossed into the air.

b. The momentum of the ball would be approximately \rm \left(-45\; \rm kg \cdot m \cdot s^{-1}\right) three seconds after it reaches the highest point (assuming that it didn't hit the ground.) This momentum is smaller than zero because it points downwards.

Explanation:

The momentum p of an object is equal its mass m times its velocity v. That is: \vec{p} = m \cdot \vec{v}.

Assume that the air resistance on this ball is negligible. If that's the case, then the ball would accelerate downwards towards the ground at a constant g \approx -10\; \rm m \cdot s^{-2}. In other words, its velocity would become approximately 10\; \rm m \cdot s^{-1} more negative every second.

The initial velocity of the ball is 60\; \rm m \cdot s^{-1}. After two seconds, its velocity would have become 60\;\rm m \cdot s^{-1} + 2\; \rm s \times \left(-10\;\rm m \cdot s^{-1}\right) = 40\; \rm m \cdot s^{-1}. The momentum of the ball at that time would be around p = m \cdot v \approx 60\; \rm kg \cdot m \cdot s^{-1}.

When the ball is at the highest point of its trajectory, the velocity of the ball would be zero. However, the ball would continue to accelerate downwards towards the ground at a constant g \approx -10\; \rm m \cdot s^{-2}. That's how the ball's velocity becomes negative.

After three more seconds, the velocity of the ball would be 0\; \rm m \cdot s^{-1} + 3\; \rm s \times \left(-10\; \rm m \cdot s^{-2}\right) = -30 \; \rm m \cdot s^{-1}. Accordingly, the ball's momentum at that moment would be p = m \cdot v \approx \left(-45\; \rm kg \cdot m \cdot s^{-1}\right).

3 0
3 years ago
How many miles away is the sun to the earth?
geniusboy [140]
<span>92.96 million mi..........</span>
7 0
3 years ago
Read 2 more answers
A negative charge of 20 x 10-6C and another charge of 15 x 10-6C are separated by as distance of 0.7 m.
denpristay [2]

Answer:

Approximately 5.5\; \rm N, assuming that the volume of these two charged objects is negligible.

Explanation:

Assume that the dimensions of these two charged objects is much smaller than the distance between them. Hence, Coulomb's Law would give a good estimate of the electrostatic force between these two objects regardless of their exact shapes.

Let q_1 and q_2 denote the magnitude of two point charges (where the volume of both charged object is negligible.) In this question, q_1 = 20 \times 10^{-6}\; \rm C  and q_2 = 15 \times 10^{-6}\; \rm C.

Let r denote the distance between these two point charges. In this question, r = 0.7\; \rm m.

Let k denote the Coulomb constant. In standard units, k \approx 8.98755\times 10^{9}\; \rm kg \cdot m^{3}\cdot s^{-2}\cdot C^{-2}.

By Coulomb's Law, the magnitude of electrostatic force (electric force) between these two point charges would be:

\begin{aligned}F &= \frac{k \cdot q_1 \cdot q_2}{r^{2}}\end{aligned}.

Substitute in the values and evaluate:

\begin{aligned}F &= \frac{k \cdot q_1 \cdot q_2}{r^{2}}\\ &\approx 8.98755 \times 10^{9}\; \rm kg \cdot m^{3}\cdot s^{-2}\cdot C^{-2} \\ &\quad \times 20\times 10^{-6}\; \rm C\\ &\quad \times 15\times 10^{-6}\; \rm C \\ &\quad \times \frac{1}{{(0.7\; \rm m)}^{2}}\\ &\approx 5.5\; \rm N \end{aligned}.

8 0
3 years ago
Which of the following is an example of balanced forces?
Sergio [31]

A seesaw remains stationary when two students of equal weight sit on the ends

c

6 0
3 years ago
Read 2 more answers
Other questions:
  • Light from the sun reaches the earth in 8.3 minutes. the speed of light is 3.0  108 m/s. in kilometers, how far is the earth fr
    5·1 answer
  • What is another name for the magnitude of the velocity vector
    5·1 answer
  • Give two examples of when you would need to use the measure skill in science?
    6·1 answer
  • Landslides and mudslides can result from both volcanoes and earthquakes.<br><br> true<br> false
    15·1 answer
  • Two identical 7.10-gg metal spheres (small enough to be treated as particles) are hung from separate 700-mmmm strings attached t
    8·1 answer
  • Given the following frequencies, calculate the corresponding periods. a. 60 Hz b. 8 MHz c. 140 kHz d. 2.4 GHz
    11·1 answer
  • Which graph set-up would enable students to calculate instantaneous acceleration from the slope on the graph? a) Place distance
    15·1 answer
  • What is the radius of a bobsled turn banked at 75.0^\circ75.0 ​∘ ​​ and taken at 30.0 m/s, assuming it is ideally banked?
    9·1 answer
  • if a 3.1g ring is heated using 10.0 calories, its temperatures rises 17.9C calculate the specific heat capacity of the ring
    10·1 answer
  • Plz help me thank you
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!