Explanation:
Uniform velocity is when an object goes an equal amount of space in an equal amount of time whereas non uniform velocity is when the object covers an unequal amount of distance in an equal amount of time.
- Kinetic Energy of an object is the measure of the work an object can do by virtue of its motions..
- Where KE is the kinetic energy, m is the body’s mass, and v is the body’s velocity.
- Potential energy is the stored energy in any object or system by virtue of its position or arrangement of parts..
Where,
. m is the mass in kilograms
. g is the acceleration due to gravity
. h is the height in meters
Hope it helpz~ uh..
The period of the wave would be halved
Answer:
(a) 5.04 eV (B) 248.14 nm (c) 
Explanation:
We have given Wavelength of the light \lambda = 240 nm
According to plank's rule ,energy of light


Maximum KE of emitted electron i= 0.17 eV
Part( A) Using Einstien's equation
, here
is work function.
= 5.21 eV-0.17 eV = 5.04 eV
Part( B) We have to find cutoff wavelength



Part (C) In this part we have to find the cutoff frequency
