True.
A zero on the Kelvin temperature scale is also know as Absolute Zero because that is when the atom(s) have literally no kinetic energy.
The heat energy released from a piece of wire or any other section of a circuit is:
Energy = (voltage between its ends) x (current through it) x (time it's been going)
The maximum force that the tires can exert on the road before slipping is 16200 N.
From the information in the question;
The coefficient of static friction = 0.9
The mass of the car = 1800 kg
Using the formula;
μ = F/R
μ = coefficient of static friction
F = force on the tires
R = the reaction force
But recall that the reaction is equal in magnitude to the weight of the car.
W=R
Hence; R = 1800 kg × 10 ms-2 = 18000 N
Making F the subject of the formula;
F = μR
Substituting values;
F = 18000 N × 0.9
F = 16200 N
Hence, the maximum force that the tires can exert on the road before slipping is 16200 N.
Learn more: brainly.com/question/18754989
Answer:
7.78x10^-8T
Explanation:
The Pointing Vector S is
S = (1/μ0) E × B
at any instant, where S, E, and B are vectors. Since E and B are always perpendicular in an EM wave,
S = (1/μ0) E B
where S, E and B are magnitudes. The average value of the Pointing Vector is
<S> = [1/(2 μ0)] E0 B0
where E0 and B0 are amplitudes. (This can be derived by finding the rms value of a sinusoidal wave over an integer number of wavelengths.)
Also at any instant,
E = c B
where E and B are magnitudes, so it must also be true at the instant of peak values
E0 = c B0
Substituting for E0,
<S> = [1/(2 μ0)] (c B0) B0 = [c/(2 μ0)] (B0)²
Solve for B0.
Bo = √ (0.724x2x4πx10^-7/ 3 x10^8)
= 7.79 x10 ^-8 T