V1 = 2.00 L
<span>T1 = 25 + 273 = 298 K </span>
<span>V2 = 6.00 L </span>
<span>T2 = ? </span>
<span>Assuming the pressure is to remain constant, then </span>
<span>V1/T1 = V2/T2 </span>
<span>T2 = T1V2/V1 = (298)(6)/(2) = 894 deg K</span>
Answer:
Gold is a metal, more specifically a transition metal, whereas Oxygen is a nonmetal, more specifically a reactive nonmetal. Using this information, you can compare and contrast metals, nonmetals, and metalloids.
Metals are:
Shiny
High melting point
Mostly silver or gray in color
Mostly solids at room temperature – Mercury (Hg) is a liquid at room temperature
Malleable – able to be hammered into a thin sheet
Ductile – able to be drawn/pulled into a wire
Good conductors of heat and electricity
Nonmetals are:
Dull
Low melting point
Brittle – break easily
Not malleable
Not ductile
Poor conductors of heat and electricity
Metalloids are:
Found on the “zig-zag” line on the Periodic Table of Elements
Have properties of both metals and nonmetals
Can be shiny or dull
Semiconductors – able to conduct electricity under certain conditions
Explanation:
Reccomend this site for questions llike these: https://ptable.com/#Properties
Answer:
The final temperature of the system is 27.3°C.
Explanation:
Heat lost by aluminum = 3.99 × 0.91 × (100-T)
= 3.631 (100-T)
Heat gained by water = 10 × 4.184 × (T-21)
= 41.84 (T-21)
As,
Heat gained = Heat loss
or, 3.631(100-T) = 41.84(T-21)
or,363.1 - 3.631 T = 41.84 T - 878.64)
or, (41.84+ 3.631) T = 878.64 +363.1
or T= 
or, T = 27.3°C
Hence the final temperature is 27.3°C.
The answer is Three
!!!!!!
Answer: 5.0 moles
Explanation:
From the equation, we see that for every 4 moles of ammonia consumed, 4 moles of nitrogen monoxide are produced (we can reduce this to moles of ammonia consumed = moles of nitrogen monoxide produced).
This means that the answer is <u>5.0 mol</u>