The molecular mass of the immunoglobulin G, given the data from the question is 1.53×10⁵ g/mole
<h3>How to determine the molarity</h3>
We'll begin by calculating the molarity of the immunoglobulin G. This is illustrated below:
- Volume = 0.106 L
- Temperature (T) = 25 °C = 25 + 273 = 298 K
- Osmotic pressure (π) = 0.733 mbar = 0.733 × 0.000987 = 0.00072 atm
- Gas constant (R) = 0.0821 atm.L/Kmol
- Van't Hoff factor (i) = 1
- Molarity (M)
π = iMRT
M = π / iRT
M = 0.00072 / (1 × 0.0821 × 298)
M = 0.000029 M
<h3>How to determine the mole of immunoglobulin G</h3>
- Molarity = 0.000029 M
- Volume = 0.106 L
- Mole =?
Mole = Molarity × volume
Mole = 0.000029 × 0.106
Mole = 3.074×10⁻⁶ mole
<h3>How to determine the molar mass of mmunoglobulin G</h3>
- Mole = 3.074×10⁻⁶ mole
- Mass = 0.470 g
- Molar mass =?
Molar mass = mass / mole
Molar mass = 0.47 / 3.074×10⁻⁶
Molar mass = 1.53×10⁵ g/mole
Learn more about Osmotic pressure:
brainly.com/question/5925156
#SPJ1
Answer:
sodium chloride—is NaCl.
Explanation:
Table salt is an ionic compound, which breaks into its component ions or dissociates in water. These ions are Na+ and Cl-. The sodium and chlorine atoms are present in equal amounts (1:1 ratio), arranged to form a cubic crystal lattice.
Answer:
Mass = 96 g
Explanation:
Given data:
Number of moles of C = 8 mol
Mass of C in gram = ?
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of C = 12 g/mol
8 mol = mass / 12 g/mol
Mass = 8 mol × 12 g/mol
Mass = 96 g
Answer:
Yes
Explanation:
First remember that a significant figure are basically values that contribute to the precision of a value. In any scientific notation the values are significant figures because these values stay the same. In this case we have two significant figures which is 6 and 0, you can further prove that they are significant figures by converting the notation into standard form.

Negative so move the decimal point to the left:

6 and 0 are the significant figures in this standard notation because it's precise to it's actual value which is 6.0.
To sum up, the values you have on the left side of a notation are significant figures since they will not change no matter if it's standard or scientific notation meaning it's precise.
Hope this helps.