Answer: -
Magnesium reacts very slowly to form magnesium hydroxide and hydrogen gas. The balanced chemical equation for the reaction is
Mg + 2H₂O → Mg(OH)₂ + H₂
Explanation: -
Chemical symbol of magnesium = Mg
Chemical formula for magnesium hydroxide = Mg(OH)₂
Chemical formula for hydrogen gas = H₂
The other reactant with Mg must be water H₂O.
Thus the balanced chemical equation for the reaction is
Mg + 2H₂O → Mg(OH)₂ + H₂
Explanation:
It is known that formula for the ionization energy of hydrogen atom is as follows.
E = 
or, n = 
The value of energy is given as 0.544 eV. Therefore, we will calculate the value of n as follows.
n = 
= 
= 5
Thus, we can conclude that n equals to 5 for a hydrogen atom if 0.544 eV of energy can ionize it.
Lowest is Hydrogen highest is <span>Beryllium
-HOPE THIS HELPED </span>
Do you want the estimated answer or the exact answer?
Answer: the pH of the solution is 4.52
Explanation:
Consider the weak acid as Ha, it is dissociated as expressed below
HA H⁺ + A⁻
the Henderson -Haselbach equation can be expressed as;
pH = pKa + log( [A⁻] / [HA])
the weak acid is dissociated into H⁺ and A⁻ ions in the solution.
now the conjugate base of the weak acid HA is
HA(aq) {weak acid} H⁺(aq) + A⁻(aq) {conjugate base}
so now we calculate the value of Kₐ as well as pH value by substituting the values of the concentrations into the equation;
pKₐ = -logKₐ
pKₐ = -log ( 7.4×10⁻⁵ )
pKₐ = 4.13
now thw pH is
pH = pKₐ + log( [A⁻] / [HA])
pH = 4.13 + log( [0.540] / [0.220])
pH = 4.13 + 0.3899
pH = 4.5199 = 4.52
Therefore the pH of the solution is 4.52