Answer:
Momentum of first train car will reduce
Explanation:
When the moving care collides with the stationary car, it will increase the momentum of the stationary car. However, its own momentum will reduce.
It is so because the speed of the first train car will reduce after collision due to loss of energy in the collision while the stationary car may gain some momentum due to rise in velocity from zero (velocity at stationary position).
Answer:
Mass = 114.26 g
Explanation:
Given data:
Number of gold atoms = 3.47×10²³ atoms
Mass in gram = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
3.47×10²³ atoms × 1 mol /6.022 × 10²³ atoms
0.58 mol
Mass of gold:
Mass = number of moles × molar mass
Mass = 0.58 mol × 197 g/mol
Mass = 114.26 g
In an ideal gas, there are no attractive forces between the gas molecules, and there is no rotation or vibration within the molecules. The kinetic energy of the translational motion of an ideal gas depends on its temperature. The formula for the kinetic energy of a gas defines the average kinetic energy per molecule. The kinetic energy is measured in Joules (J), and the temperature is measured in Kelvin (K).
K = average kinetic energy per molecule of gas (J)
kB = Boltzmann's constant ()
T = temperature (k)
Kinetic Energy of Gas Formula Questions:
1) Standard Temperature is defined to be . What is the average translational kinetic energy of a single molecule of an ideal gas at Standard Temperature?
Answer: The average translational kinetic energy of a molecule of an ideal gas can be found using the formula:
The average translational kinetic energy of a single molecule of an ideal gas is (Joules).
2) One mole (mol) of any substance consists of molecules (Avogadro's number). What is the translational kinetic energy of of an ideal gas at ?
Answer: The translational kinetic energy of of an ideal gas can be found by multiplying the formula for the average translational kinetic energy by the number of molecules in the sample. The number of molecules is times Avogadro's number:
The answer is Reduction. All three methods (convection, radiation, and conduction) are all ways of transferring heat. Convection is the transfer of heat by means of a medium such as air. Conduction is the transfer of heat from the contact of two surfaces at different temperatures. Radiation is the transfer of heat via electromagnetic waves.
Reduction is a chemical reaction that involves the gain of electrons. It is the opposite of oxidation which involves the loss of electrons.
Answer:DNA
Explanation:I already do the test