Calculate the circumference of the two semi circles, which equals a full circle. Then add the two sides of the track.
Circumference is pi x diameter = 3.14 x 22.8 = 71.592, so, you would need to add 71.592 + 49.2 + 49.2 = 169.992 meters, and that would be the length of one lap of the track.
Answer:
Exponential transformation.
Step-by-step explanation:
y = log_3 (x + 3) - 2
To transform this into exponential, we have:
Adding 2 to both sides
y + 2 = log_3 (x + 3)
3^(y + 2) = x + 3
x = 3^(y + 2) - 3
A possible perimeter for the rectangle would be 28
Area=L x W
40/10=4
Width=4, Length=10
Perimeter=L+L+W+W
4+4+10+10=28
<span>y= 2x ^2 - 8x +9
</span>y = a(x - h)2 + k, where (h, k) is the vertex<span> of the parabola
</span>so
y= 2x ^2 - 8x + 9
y= 2x ^2 - 8x + 8 + 1
y = 2(x^2 - 4x - 4) + 1
y = 2(x - 2)^2 + 1 ....<---------<span>vertex form</span>
We know, cos A + cos B = 2cos(C+D)/2 × cos(C - D)/2
So,
cos 130 + cos 110 + cos 10
cos 130 + 2cos (110+10)/2 × cos( 110-10)/2
cos 130 + 2cos 60 × cos 50
cos ( 180 - 50 ) + 2cos60 cos 50
We know, cos ( 180 - A ) = -cos A
2cos 60 cos 50 - cos 50
Also, cos 60 = 0.5
2×0.5 cos 50 - cos50
cos 50 - cos 50
0 = RHS.
Hence proved